
1

A Generic Specification Framework for Weakly
Consistent Replicated Data Types

Xue Jiang, Hengfeng Wei, Yu Huang, Member, IEEE, Yuxing Chen, Anqun Pan

Abstract—Burckhardt et al. proposed a formal specification framework for eventually consistent replicated data types, denoted
(vis, ar), based on the notions of visibility and arbitration relations. However, being specific to eventually consistent systems, this
framework has two limitations. First, it does not cover non-convergent consistency models since arbitration ar is a total order over
events. Second, it does not cover the consistency models in which each event is required to be aware of the return values of some
events that are visible to it when justifying its return value. These limitations make the (vis, ar) framework not generic enough to specify
and reason about important weak consistency models such as Causal Memory and PRAM. In this paper, we extend this framework to
a more generic one called (vis, ar, V) for weakly consistent replicated data types. To specify non-convergent consistency models as
well, we relax the arbitration relation ar to be a partial order. To overcome the second limitation, we allow to specify for each event e, a
subset V (e) of its visible set whose return values cannot be ignored when justifying the return value of e. To make it practically feasible,
we provide candidates for the visibility and arbitration relations and the V function. By combining candidates for these three
components, we are able to specify not only existing consistency models but also new ones that are reasonable and promising for
practical usefulness. We then show how to specify consistency models in our framework, and provide three case studies.

Index Terms—Replicated Data Types, Consistency Models, Sequential Consistency, Causal Consistency, Pipelined Consistency

F

1 INTRODUCTION

G EOGRAPHICALLY distributed systems often replicate
data at multiple sites to achieve high availability and

low latency, even under network partitions [1], [2]. Accord-
ing to the CAP theorem [3], [4] and the PACELC tradeoff [5],
these systems often sacrifice strong consistency and choose
to implement weakly consistent replicated data types.

Eventual consistency is one of the most widely used
weak consistency models in distributed systems [6], [7]. It
guarantees that “if clients stop issuing updates, the replicas
will eventually reach a consistent state.” [7]. For example,
to allow replicas to respond to user operations immediately,
collaborative text editing systems [8], [9] usually implement
an eventually consistent replicated list object modelling the
shared document. It requires the final lists at all replicas
to be identical after executing the same set of user opera-
tions [8]. In principle, eventual consistency has two aspects:

1) At the strong aspect, it requires eventual convergence
among replicas and thus the clients1 will eventually
obtain the same view of replica states.

• Xue Jiang was with the State Key Laboratory for Novel Software Tech-
nology, Nanjing University, China until June 2024, and is currently
with School of Navigation Engineering, Zhejiang International Maritime
College, China. The work was primarily completed before her graduation
from Nanjing University.
E-mail: xuejiang1225@gmail.com

• Hengfeng Wei, and Yu Huang are with the State Key Laboratory for Novel
Software Technology, Nanjing University, China.
E-mail: xuejiang1225@gmail.com,{hfwei, yuhuang}@nju.edu.cn

• Yuxing Chen and Anqun Pan are with Tencent Inc., China.
E-mail: axinggu@gmail.com, aaronpan@tencent.com

1. Following [2], we use clients, sessions, and processes interchange-
ably. We also use program order and session order interchangeably.

2) At the weak aspect, it imposes no restrictions on the
intermediate states and thus the clients may obtain
(temporarily) inconsistent views of replica states.

Burckhardt et al. [1], [2] proposed a formal specification
framework for eventually consistent replicated data types.
It is based on the visibility (denoted vis) and arbitration
(denoted ar) relations over events of a history, and we call
it the (vis, ar) framework.
• The visibility relation is an acyclic relation that accounts

for the relative timing of events. Intuitively, if an event
e1 is visible to another event e2, it means that the effect
of e1 is visible to the client performing e2 before e2
is invoked. For example, e2 may be a query returning
the value written by update e1 [10]. We call two events
concurrent if they are invisible to each other.

• The arbitration relation is a total order over all events
of a history. It indicates how the system resolves the
conflicts due to concurrent events. For example, such a
total order can be achieved using timestamps [11].

Being specific to eventually consistent systems, the
(vis, ar) framework is not general enough to cover some
important weak consistency models such as PRAM [12] and
Causal Memory [13]. Specifically, we identify two limita-
tions of the (vis, ar) framework as follows, corresponding
to the two aspects of eventual consistency mentioned above:

1) Convergence vs. Non-Convergence. The total ordering re-
quirement of ar over all events aims to ensure even-
tual convergence of the clients’ views of replica states.
Therefore, the (vis, ar) framework does not cover the
consistency models that do not enforce convergence.

2) Awareness vs. Unawareness. In the (vis, ar) framework,
the return value of an event e is justified by the set
vis−1(e) of events visible to e (arranged in the order

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

2

p1 : x.wr(1) x.rd ◃ 2

p2 : x.wr(2) x.rd ◃ 1

po

po
rf
rf

(a) History augmented with rf.

p1 : x.wr(1) x.rd ◃ 2

p2 : x.wr(2) x.rd ◃ 1

so,vis,ar

so,vis,ar
vis,ar

vis,ar

(b) Abstract execution.

Fig. 1: Motivating history for convergence and non-
convergence: It satisfies CM , but it is non-convergent. We
denote the operation of writing value v to x by x.wr(v) .⊥
(where ⊥ indicates that it returns no value and is omitted in
figures) and the operation of reading v from x by x.rd . v.
We write x.rd . to emphasize that the return value has
been ignored.

ar), while ignoring all their return values. Therefore,
the (vis, ar) framework does not cover the consistency
models in which an event is required to be aware of the
return values of some events that are visible to it.

The feature of unawareness is useful for wait-free asyn-
chronous message-passing distributed systems where op-
erations should be completed without waiting for any
other process. Unawareness allows such systems to execute
operations in a speculative order with the possibility of
rolling back and reordering previously executed operations
if needed [14], [15], [16]. For example, Bayou [6] makes
both local operations and remote operations received im-
mediately visible, even if there are prior operations in the
arbitration that may arrive in the future. When an operation
o is received, all operations arbitrated after o but have
already been applied are undone and then reapplied after
applying o [16].

We illustrate both limitations of the (vis, ar) framework
with Causal Memory (CM) [13], [14] with respect to
read/write registers, and motivate our first contribution
of this paper which is a generalization of the (vis, ar)
framework. Intuitively, CM ensures that processes agree
on the relative ordering of operations that are causally
related [13]. The causality order over operations is defined as
the transitive closure of the union of program order po and
the read-from relation rf which informally associates each
read with a unique write from which it reads the value. A
history satisfies CM (w.r.t. read/write registers) if for each
process, the set of all operations on this process and all
write operations on other processes can be arranged into
an operation sequence which preserves the causality order
such that each read reads the value from the most recently
preceding write in this sequence on the same register.

Example 1. Consider the history in Fig. 1(a) consisting of
two processes p1 and p2 which read from and write to a
shared register x. This history satisfies CM : the witness op-
eration sequences for p1 and p2 are 〈x.wr(1) x.wr(2) x.rd .
2〉 and 〈x.wr(2) x.wr(1) x.rd . 1〉, respectively. However,
it is non-convergent: processes p1 and p2 cannot agree with
a total order ar over x.wr(1) and x.wr(2). Particularly, it
does not satisfy the convergent variant of causal consistency
called WCCv [2], [14] defined in the (vis, ar) framework;
see Fig. 1(b) and Definition 17.

This example demonstrates that the (vis, ar) framework

p1 : x.wr(1) y.wr(1) z.wr(1)

p2 : y.wr(2) x.rd ◃ 0 z.rd ◃ 1 y.rd ◃ 2

po po

po po po
rf

rf

(a) History augmented with rf.

p1 : x.wr(1) y.wr(1) z.wr(1)

p2 : y.wr(2) x.rd ◃ 0 z.rd ◃ 1 y.rd ◃ 2

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

vis,arar

vis,ar

(b) Abstract execution.

Fig. 2: Motivating history for awareness and unawareness. It
violates CM . The arrows for relations implied by transitivity
are not drawn.

is insufficient for specifying histories that adhere to non-
convergent consistency models such as CM . To specify non-
convergent consistency models as well, we can relax the
arbitration relation ar to be a partial order.

Example 2. Consider the history in Fig. 2(a). It does not sat-
isfy CM . In any operation sequence for process p2, x.wr(1)
must be placed after x.rd . 0 and z.wr(1) must be placed
before z.rd . 1. As a consequence, y.wr(1) must be placed
between y.wr(2) and y.rd . 2. However, such sequences
cannot be valid; in particular, the return value of y.rd . 2
is not justified.

However, if the return values of the operations
that causally precede y.rd . 2 can be ignored,
y.rd . 2 can be justified by the operation sequence
〈x.wr(1) y.wr(1) z.wr(1) y.wr(2) x.rd. z.rd. y.rd.2〉.
Similarly, z.rd . 1 and x.rd . 0 (0 is the initial value of x)
can be justified by 〈x.wr(1) y.wr(1) z.wr(1) y.wr(2) x.rd .
z.rd . 1〉 and 〈y.wr(2) x.rd . 0〉, respectively. Actually,

this history in Fig. 2(a) satisfies WCCv [2], [14] defined in
the (vis, ar) framework in which return values are ignored;
see Fig. 2(b) and Definition 17.

This example demonstrates that the (vis, ar) framework
is insufficient for specifying histories that adhere to consis-
tency models that demand awareness. To allow an event
e to be aware of the return values of some or all events
in vis−1(e), we introduce a function V defined on events.
Specifically, V (e) for event e is a subset of vis−1(e) whose
return values cannot be ignored when justifying the return
value of e.

Our First Contribution. In this paper, we extend the
(vis, ar) specification framework for eventually consistent
replicated data types into a generic one called (vis, ar, V)
for weakly consistent replicated data types (Section 3).
On the one hand, by relaxing ar to be a partial order,
the (vis, ar, V) framework is able to cover non-convergent
consistency models such as PRAM [12] and Causal Mem-
ory [13]. On the other hand, by introducing the V function
for events, the (vis, ar, V) framework is able to cover the
consistency models in which each event is required to be
aware of the return values of some or all events that are vis-
ible to it. To make it practically feasible, we provide common
candidates for the three components of this generic frame-

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

3

work, including the vis and ar relations and the V function.
Our Second Contribution. By combining candidates for

each component, we are able to specify various consistency
models, including both existing ones and new ones, in the
(vis, ar, V) framework, including variants of sequential
consistency (Section 4), causal consistency (Section 5),
and pipelined consistency (Section 7). In particular, we
find that three variants of sequential consistency are
equivalent. We also provide case studies to demonstrate the
usefulness of our framework. Specifically, we show that the
causal consistency protocol of MongoDB in the failure-free
sharded cluster deployment satisfies Causal Memory
Convergence, a new causal consistency variant discovered
in our framework (Section 6). For pipelined consistency,
we show that although the failure-free client-server
implementation of GSP (Global Sequence Protocol) satisfies
Weak Causal Convergence, it does not satisfy Pipelined
Convergence, another pipelined consistency variant
discovered in our framework (Section 8). We also show that
RA-Linearizability, a specification recently proposed for
conflict-free replicated data types, implies Weak Pipelined
Convergence, but not Pipelined Convergence (Section 9).

This paper is an extended version of the SRDS confer-
ence paper [17], with four new Sections 4, 7, 8, and 9.

2 PRELIMINARIES

In this section, we review the formal specification frame-
work called (vis, ar) for eventually consistent replicated
data types proposed by Burckhardt et al. [1], [2].

2.1 Relations and Orderings
A binary relation R over a given set A is a subset of A×A,
i.e., R ⊆ A × A. For a, b ∈ A, we use (a, b) ∈ R and a

R−→
b interchangeably. The inverse relation of R is denoted by
R−1, i.e., (a, b) ∈ R ⇐⇒ (b, a) ∈ R−1. We use R−1(b) to
denote the set {a ∈ A | (a, b) ∈ R}.

Given two binary relationsR and S over setA, we define
the composition of them as R;S = {(a, c) | ∃b ∈ A : a

R−→
b

S−→ c}. For n ∈ N+, Rn denotes the n-ary composition
R;R; . . . ;R. The transitive closure of R is R+ ,

⋃
n≥1R

n.
For some subset A′ ⊆ A, the restriction of R to A′ is R|A′ ,
R∩(A′×A). If f : A→ B is a function (also a relation) from
A toB, the restriction of f toA′ ⊆ A is f |A′ , f∩(A′×B) =
{(a, f(a)) | a ∈ A′}.

A relation R is natural if ∀x ∈ A : |R−1(x)| < ∞. A
(strict) partial order is an irreflexive and transitive relation.
A total order is a relation which is a partial order and total.
For A′ ⊆ A, to(R,A′) asserts that R is a total order over A′.

2.2 Abstract Data Types
We consider a replicated database storing objects of some
abstract data types.

Definition 1. An abstract data type τ ∈ Type is a pair τ =
(Op,Val) such that
• Op is the set of operations supported by τ ;
• Val is the set of values allowed by τ . We assume⊥ ∈ Val

to indicate that some operations may return no value.

Definition 2. The sequential semantics of a type τ is a
function evalτ : Op∗ × Op → Val that, given a sequence
of operations S and an operation o, determines the return
value evalτ (S, o) ∈ Val for o when o is performed after S.

Examples 3, 4, and 5 contain formal definitions for the
intuitive sequential semantics of read/write registers reg,
key-value stores kvs, and queues fq, respectively.

Example 3. An integer read/write register reg supports two
operations: wr(v) writes value v ∈ Z to the register and rd
reads the value from it. A rd operation returns the value of
the last preceding wr, or the initial value 0 if there are no
prior writes. Formally, for any operation sequence S,

evalreg(S,wr(v)) = ⊥,
evalreg(S,rd) = v, if wr(0) S = S1 wr(v) S2

and S2 contains no wr operations.

Example 4. A key-value store kvs supports two operations:
PUT(k, v) writes value v to key k and GET(k) reads value
(which may be the initial value 0) from key k. Formally, for
any operation sequence S,

evalkvs(S, PUT(k, v)) = ⊥,
evalkvs(S, GET(k)) = v, if PUT(k, 0) S = S1 PUT(k, v) S2

and S2 contains no PUT operations on k.

Example 5. An integer FIFO queue fq supports two oper-
ations. enq(v) adds value v ∈ N to the tail of the queue.
deq removes and returns the element v at the head of the
queue; if the queue is empty, we let v = ⊥. Formally, for any
operation sequence S,

evalfq(S,enq(v)) = ⊥,

evalfq(S,deq) =

⊥, if S is empty
v, if S = S1 enq(v) S2

and evalfq(S1,deq) = ⊥
and S2 contains no deq.

2.3 Histories

Clients interact with the replicated database by performing
operations on objects. We use a history to record such inter-
actions in a computation.

Definition 3. A history is a tuple H = (E,op,rval,so)
such that

• E is the set of all events of operations invoked by clients
in a single computation;

• op : E → Op describes the operation of an event;
• rval : E → Val describes the value returned by the

operation op(e) of an event e;
• so ⊆ E × E is a partial order over E, called the session

order. It relates operations within a session in the order
they were invoked by clients.

We lift op to sets of events by defining op(F) = {op(e) |
e ∈ F} for F ⊆ E. See Figs. 1(b) and 2(b) for examples of
histories (for now ignore the relations vis and ar).

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

4

2.4 Abstract Executions
To justify the return values of all events in a history, we
need to know how these events are related to each other.
Following [1], [2], this is captured declaratively by the
visibility and arbitration relations.

Definition 4. An abstract execution is a triple A =
((E,op,rval,so),vis,ar) such that
• (E,op,rval,so) is a history;
• Visibility vis ⊆ E×E is an acyclic and natural relation;
• Arbitration ar ⊆ E × E is a total order.

Figs. 1(b) and 2(b) show examples of abstract executions.
In both abstract executions, the visibility relations vis corre-
spond to the read-from rf relations. The arbitration relation
z.wr(1)

ar−→ y.wr(2) in Fig. 2(b) enforces an order between
these two concurrent operations.

2.5 Consistency Models
Definition 5. A consistency model is a set of consistency
predicates on abstract executions.

A consistency predicate on an abstract execution A is a
statement that is true or false depending on A [2]. We write
A |= P if the consistency predicate P is true on the abstract
execution A.

Definition 6. An abstract execution A satisfies consistency
model C = {P1, . . . , Pn}, denoted A |= C, if each consis-
tency predicate in C is true on A.

We are concerned with histories that satisfy some consis-
tency model.

Definition 7. A history H satisfies consistency model C =
{P1, . . . , Pn}, denoted H |= C, if it can be extended to an
abstract execution that satisfies C. Formally, H |= C ⇐⇒
∃ vis,ar. (H,vis,ar) |= C.

2.6 Return Value Consistency
A common consistency predicate is the consistency of return
values defined for a given data type τ , denoted RVAL(τ).
RVAL(τ) requires that the return value rval(e) of an event
e in an abstract execution A should agree with the result
computed by applying the sequential semantics of data type
τ to the operation sequence based on ctxtA(e), which is
obtained by arranging the events in vis−1(e) according to
ar, and the operation op(e) [2]. Here ctxtA(e) is called the
operation context of e in A. It is the restriction of A to the set
vis−1(e) of events visible to e.

Definition 8. The operation context of an event e ∈ E in
an abstract execution A = ((E,op,rval,so),vis,ar) is
defined as ctxtA(e) , A|vis−1(e),op,vis,ar.

Definition 9. For a data type τ , its return value consistency
predicate on an abstract execution A is RVAL(τ) , ∀e ∈
E. rval(e) = evalτ

(
ctxtA(e),op(e)

)
.

Note that ctxtA(e) ignores rval in the original history.
Consequently, when justifying the return value of event e,
it is not required for eval to be consistent with the return
values of the events visible to e. As shown in Example 2, the
abstract execution in Fig. 2(b) satisfies RVAL(reg).

3 A GENERIC SPECIFICATION FRAMEWORK FOR
WEAKLY CONSISTENT REPLICATED DATA TYPES

In this section, we present our generic (vis, ar, V) specifica-
tion framework for weakly consistent replicated data types.
It not only covers more existing consistency models than
the (vis, ar) framework does, but also helps to discover
new ones. We first define the (vis, ar, V) framework in a
general way. Then, we provide candidates for the visibility
and arbitration relations and the V function.

3.1 The (vis, ar, V) Specification Framework

The (vis, ar, V) framework generalizes (vis, ar) in two
ways, overcoming the two limitations of (vis, ar):

1) Convergence vs. Non-Convergence. The arbitration rela-
tion ar in (vis, ar, V) is a partial order over events.
Therefore, (vis, ar, V) is able to cover classic non-
convergent consistency models such as PRAM [12] and
Causal Memory [13].

2) Awareness vs. Unawareness. In (vis, ar, V), we allow to
specify for each event e, a subset V (e) of vis−1(e)
whose return values cannot be ignored when justifying
the return value of e. Therefore, (vis, ar, V) is able to
cover the consistency models in which each event is
required to be aware of the return values of some or all
events that are visible to it.

To cover non-convergent consistency models, we refor-
mulate the definition of abstract executions by relaxing ar
to be a partial order.

Definition 10. An abstract execution in the (vis, ar, V) frame-
work is a triple A = ((E,op,rval,so),vis,ar) such that
• (E,op,rval,so) is a history;
• Visibility vis ⊆ E×E is an acyclic and natural relation;
• Arbitration ar ⊆ E × E is a partial order.

To be aware of return values is a bit more involved. We
first reformulate operation context by selectively unhiding
the return values of some or all visible events.

Definition 11. Let A = ((E,op,rval,so),vis,ar) be
an abstract execution in the (vis, ar, V) framework. The
operation context of e ∈ E in A is defined as

ctxtA(e, V) , A|vis−1(e),op,rval|V (e),vis,ar,

where V : E → 2E specifies a subset of vis−1(e). We let
Ctxt be the set of all operation contexts, ranged over by C.
We use VC to select the set V (e) in C.

Accordingly, the RVAL consistency predicate should be
adapted to use ctxtA(e, V).

Definition 12. For a data type τ , its return value consistency
predicate on an abstract execution A is

RVAL(τ, V) , ∀e ∈ E. rval(e) ∈ evalτ
(
ctxtA(e, V),op(e)

)
.

In the definition above, we need to redefine the sequen-
tial semantics of τ , i.e., the evalτ function. On the one hand,
since ar is a partial order, there may be a set of operation
sequences over vis−1(e) to evaluate. Thus, we regard an
operation context as a set of serializations, which are linear
extensions of ar over vis−1(e). This is why we use ‘∈’

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

5

TABLE 1: Recipes for vis, ar, and V in (vis, ar, V) Frame-
work.

vis

∅ ⊆ vis
so ⊆ vis (Read Your Writes [18])
vis;so ⊆ vis (Monotonic Reads [18])
so;vis ⊆ vis (Monotonic Writes [18])
so;vis;so ⊆ vis
vis;so;vis ⊆ vis (Writes Follow Reads [18])
(so ∪ vis)+ ⊆ vis

ar

∅ ⊆ ar
so ⊆ ar
vis ⊆ ar
vis;so ⊆ ar
to(ar, E)

V (e)
V (e) = ∅
V (e) = so−1(e) ∩ vis−1(e)
V (e) = vis−1(e)

instead of ‘=’ in the definition of RVAL(τ, V). On the other
hand, besides justifying the return value rval(e) of event
e, evalτ is required to preserve the unhidden return values
specified by rval|V (e) in a given serialization obtained from
ctxtA(e, V). Such serializations are considered valid.

Definition 13. The sequential semantics of a type τ ∈ Type is
a function evalτ : Ctxt×Op→ 2Val that, given an operation
context C ∈ Ctxt and an operation o ∈ Op, determines
the possible return values evalτ (C, o) ⊆ Val for o when
o is performed in the context C. Specifically, evalτ (C, o) is
computed as follows2:

evalτ (C, o) =
{
v ∈ Val | ∃S ∈ C :(

evalτ (op(S), o) = v ∧
∀e ∈ VC : rval(e) = evalτ

(
op(S≺e),op(e)

))}
,

where S≺e is the prefix of S before e. Given a serialization
S ∈ C, the first conjunction computes the return value for o
when o is performed after operation sequence op(S), and
the second one ensures that S is valid by checking the
unhidden return values w.r.t. corresponding prefixes of S.

Example 6. We argue that the history in Fig. 1 satisfies
CM in the (vis, ar, V) framework. (CM is formally defined
in Section 5.) We choose an ar which does not arbitrate
between x.wr(1) and x.wr(2). It is easy to check that the
resulting abstract execution in Fig. 1(b) satisfies RVAL(reg).

Example 7. We argue that the history in Fig. 2 does not sat-
isfy CM in the (vis, ar, V) framework. Consider the abstract
execution in Fig. 2(b), obtained by augmenting the history
with vis and ar as in Example 2. Besides vis ⊆ ar, CM
requires evalreg to preserve the unhidden return values of
the visible events in V (e) = so−1(e). By similar argument
to that in Example 2, there is no way of justifying y.rd . 2
while preserving the return values of x.rd . 0 and z.rd . 1.

3.2 Recipes for the (vis, ar, V) Framework

The (vis, ar, V) framework is parametric w.r.t. three com-
ponents, i.e., the vis and ar relations and the V function.
By combining different consistency predicates on them, we
can specify various consistency models in this framework.
To make it practically feasible, we provide a number of
candidates for each component, as summarized in Table 1.

2. Note that we overload evalτ with different type signatures.

3.2.1 Recipe for the Visibility Relation

We identify a number of common consistency predicates
on vis in roughly the order they induce larger and larger
visible sets consisting of the events visible to some event.

• The weakest one does not enforce an event to observe
any particular set of events. Formally, ∅ ⊆ vis.

• The most basic ingredient for visibility is the session
order so. The predicate so ⊆ vis requires each event
to see all the previous events in the same session.

• To allow an event to see the events in different sessions
as well, it is necessary to compose so with vis in
some ways. There are four basic kinds of compositions,
namely vis;so ⊆ vis, so;vis ⊆ vis, so;vis;so ⊆
vis, and vis;so;vis ⊆ vis.

• To further allow an event to see the events in different
sessions through an arbitrarily long chain of composi-
tions of vis and so, we rely on the transitive closure
over vis and so. That is, we have (so∪ vis)+ ⊆ vis,
where hb , (so ∪ vis)+ is the well-known happens-
before order [2], [1] first proposed by Lamport [11]. Note
that hb ⊆ vis implies that vis is transitive.

3.2.2 Recipe for the Arbitration Relation

When justifying the return value of event e with respect
to the sequential semantics eval, we rely on ar to resolve
conflicts caused by concurrent events in the set vis−1(e)
of events visible to e. In the (vis, ar, V) framework, ar is
a partial order. In the following, we identify a number of
common consistency predicate on ar in roughly the order
they are able to resolve more and more conflicts.

• The weakest one does not impose any constraints on
how the conflicts should be resolved. Formally, ∅ ⊆ ar.

• A slightly stronger arbitration orders the events in
vis−1(e) (for some event e) according to the session
order [1]. Formally, so ⊆ ar. Note that so may be a
proper subset of vis.

• To resolve all conflicts (using ar) among visible events
to an event, we require vis ⊆ ar.

• (vis;so) ⊆ ar orders an event after other ones previ-
ously observed in the same session [1].

• Finally, convergent consistency models often require ar
to be a total order over E, denoted to(ar, E), as in the
(vis, ar) framework [1], [2].

3.2.3 Recipe for the V Function

By definition, V (e) is a subset of vis−1(e). We identify three
common consistency predicates on V (e):

• The strongest one requires e to be aware of the return
values of all events visible to it. Formally, V (e) =
vis−1(e);

• Consistency models like Causal Memory [13] allow e to
ignore the return values of its visible events in different
sessions while being aware of those in its own session.
Formally, V (e) = so−1(e) ∩ vis−1(e);

• The weakest one allows e to ignore the return values
of any visible events, as in the (vis, ar) framework.
Formally, V (e) = ∅.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

6

TABLE 2: Consistency variants specified in the (vis, ar, V) specification framework. (New variants are marked with [∗].)
Consistency Models Alternative Names vis ar V (e) Case Studies

Sequential

Consistency

Variants

SC
SEQUENTIALCONSISTENCY

(Def. 21 [10])
vis = ar to(ar, E)

V (e) = ∅
—V (e) = so−1(e)

V (e) = vis−1(e)

Causal

Consistency

Variants

WCC (Def. 8 [14]) CC (Def. 4.2 [15])

hb ⊆ vis

vis ⊆ ar

V (e) = ∅ —

CM ([13], [15]) CC (Def. 9 [14]) V (e) = so−1(e) —

SCC [∗] (Section 5.4) V (e) = vis−1(e) —

WCCv

CCv (Def. 4.5 [15], Def. 12 [14])

CAUSALCONSISTENCY (Section 5.2 [2])

CAUSALITY (Def. 26 [10]) vis ⊆ ar ∧ to(ar, E)

V (e) = ∅ —

CMv [∗] (Section 5.6) V (e) = so−1(e)
MongoDB (Section 6)

The causal consistency protocol of MongoDB satisfies CMv .

SCCv [∗] (Section 5.7) V (e) = vis−1(e) —

Pipelined

Consistency

Variants

WPC [∗] (Section 7.2)

so ⊆ vis

vis ⊆ ar

V (e) = ∅ —

PC PRAM [12] (Def. 2.2 [19]) V (e) = so−1(e) —

SPC [∗] (Section 7.4) V (e) = vis−1(e) —

WPCv SUC (Def. 9 [20])

vis ⊆ ar ∧ to(ar, E)

V (e) = ∅ RA-Linearizability (Section 9)

RA-Linearizability implies WPCv , but not PCv .

PCv [∗] (Section 7.6) V (e) = so−1(e)
GSP (Section 8)

The implementation of GSP satisfies WCCv , but not PCv .

SPCv [∗] (Section 7.7) V (e) = vis−1(e) —

4 SEQUENTIAL CONSISTENCY: MODELS

Sequential consistency [21] is considered a strong con-
sistency model. It requires that all operations appear to
have executed in some sequential order consistent with
the session order. We consider three variants of sequential
consistency, namely SC∅, SCso, and SCvis (which is the orig-
inal Sequential Consistency (SC) in [21], [2]). They require
to(ar, E) to enforce a total order over all events and vis =
ar to capture that all events in ar−1(e) are visible to event e.
They differ in the function V . Specifically, SC∅, SCso, and SC
require V (e) to be ∅, so−1(e), and vis−1(e), respectively.
Interestingly, we find that SC∅, SCso, and SC are equivalent.

Theorem 1. Given a history H , we have

H |= SC∅ ⇐⇒ H |= SCso ⇐⇒ H |= SC.

Proof. The “⇐=” direction holds trivially. Now suppose that
H |= SC∅. Therefore, there exists a visibility relation vis
and an arbitration relation ar such that vis = ar and the
return value of each event e in H can be justified by the
prefix of ar, i.e., ar−1(e) = vis−1(e), while ignoring their
return values. We show that these vis and ar relations also
satisfy the properties required by SCso and SC. The proof
proceeds by induction on the events in the total ar order.

• (Base Case) The first event, denoted e1, in ar can
be justified by vis and ar in SCso and SC, since
so−1(e1) = vis−1(e1) = ∅.

• (Induction Hypothesis) Assume that for each of the first
(k − 1) events e in ar, the return value of e can be
justified by ar−1(e), while respecting the return values
of events in so−1(e) (resp. vis−1(e)) as required by
SCso (resp. SC).

• (Inductive Step) Consider the k-th event in ar, denoted
ek. On the one hand, sinceH |= SC∅, the return value of
ek can be justified by ar−1(ek). On the other hand, by
induction hypothesis, the return values of the events in
so−1(ek) (resp. vis−1(ek)) can be justified using these
vis and ar as required by SCso (resp. SC).

5 CAUSAL CONSISTENCY: MODELS

5.1 Overview

Causal consistency is one of the most widely used weak
consistency models in distributed systems [13], [22]. The key
notion is the happens-before order hb over events [11], [2].
Intuitively, causal consistency ensures that if an event e1
happens before event e2, then all sessions must observe e1
before e2. However, concurrent events may be observed in
different orders by different sessions.

In the literature, there are several causal consistency
variants with subtle differences [14], [2], [15]. In this
section, we consider six variants that we call Weak Causal
Consistency (WCC), Weak Causal Convergence (WCCv),
Causal Memory (CM), Causal Memory Convergence
(CMv), Strong Causal Consistency (SCC), and Strong
Causal Convergence (SCCv), as defined in Table 2. Note that
these variants may have different names in related work, as
summarized in Table 2. Among these variants, CMv , SCC ,
and SCCv are new variants discovered in our framework.

In terms of visibility, all causal consistency variants
require hb = (so ∪ vis)+ ⊆ vis to capture the happens-
before order over events. In terms of arbitration, they all
require vis ⊆ ar to enforce the happens-before order over
events in vis−1(e) when justifying the return value of the
event e in its operation context. However, they may differ in
two aspects: 3

• How large is the function V for specifying the subset of
visible events whose return values must be respected?
Note that in causal consistency models, so−1(e) ⊆
vis−1(e) for any event e (since so ⊆ vis). Thus,
the candidate for the V function V (e) = so−1(e) ∩
vis−1(e) is equivalent to V (e) = so−1(e).

• How strong is the arbitration relation ar for resolving
conflicts? We distinguish between two cases according
to whether ar is a total order or not, given vis ⊆ ar.

3. To exclude the trivial implementations in which replicas update
objects locally without communicating with each other, we may addi-
tionally require the eventual visibility (EV) predicate [2], [14]. EV ensures
that an event can be invisible to at most finitely many other events.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 3 shows the relative strength of these variants and Fig. 4
gives examples on objects of FIFO queues.

hb ⊆ vis
vis ⊆ ar
V [e] = ∅
RVAL
WCC

hb ⊆ vis
vis ⊆ ar

V [e] = so−1(e)
RVAL
CM hb ⊆ vis

vis ⊆ ar ∧ to(ar, E)
V [e] = so−1(e)

RVAL
CMv

hb ⊆ vis
vis ⊆ ar

V [e] = vis−1(e)
RVAL
SCC

hb ⊆ vis
vis ⊆ ar ∧ to(ar, E)
V [e] = vis−1(e)

RVAL
SCCv

hb ⊆ vis
vis ⊆ ar ∧ to(ar, E)

V [e] = ∅
RVAL
WCCv

Fig. 3: Causal consistency variants and their relative
strength. An arrow from a consistency model C1 to another
one C2 denotes that C2 is stronger than C1.

5.2 Weak Causal Consistency
Weak causal consistency (WCC), recently proposed in [14],
is the weakest variant of causal consistency we consider.
Informally speaking, an abstract execution satisfies WCC as
long as the return value rval(e) of each event e can be
justified by some serialization of its visible set vis−1(e),
while ignoring their return values. More specifically, in
terms of arbitration, WCC makes no extra restrictions on
convergence and thus concurrent events may be observed
in different orders by different sessions. In terms of V (e),
WCC allows each event e to ignore all the return values of
its visible events.

Definition 14 (Weak Causal Consistency).

WCC , (hb ⊆ vis) ∧ (vis ⊆ ar) ∧ (V (e) = ∅) ∧ RVAL.

Example 8. The history of Fig. 4(a) does not satisfy WCC .
Intuitively, event q.enq(2) (resp. p.enq(2)) must be visible
to event q.deq . 2 (resp. p.deq . 2). By transitivity of vis,
event p.enq(1) is visible to event p.enq(2). Since vis ⊆ ar,
it is impossible for the third session to dequeue 2 before 1
from the FIFO queue q.

The history of Fig. 4(b) satisfies WCC . For example, the
return value of b : deq.2 can be justified by the serialization
〈enq(1) enq(2) a : deq . b : deq . 2〉.4 Note that such
a justification is not required by WCC to be consistent
with the return value of a : deq . 2. Similarly, the return
value of b : deq . 1 can be justified by the serialization
〈enq(2) enq(1) a : deq . b : deq . 1〉.

5.3 Causal Memory
Causal memory (CM) was originally defined by Ahamad
et al. [13] on read/write registers. Recently, Perrin et al. [14]
extended it to arbitrary replicated data types. CM is stronger
than WCC in that when justifying the return value rval(e)
of each event e, CM takes into account not only the operation
invocations of the set vis−1(e) of events visible to e as in

4. For clarity, we include the event b to be justified in the serialization.

WCC but also the return values of the set so−1(e) of events
that precede e in the same session. In other words, compared
to WCC , CM requires that each session is consistent with
respect to the previous return values provided [15].

Definition 15 (Causal Memory).

CM , (hb ⊆ vis)∧(vis ⊆ ar)∧(V (e) = so−1(e))∧RVAL.

Example 9. Although the history of Fig. 4(b) satisfies WCC ,
it does not satisfy CM . Specifically, being aware of the return
value of a : deq . 2, b : deq . 2 is unjustifiable. That is,
it is impossible to construct a valid serialization consisting
of enq(2), a : deq . 2, enq(1), and b : deq . 2 subject to
enq(1)

vis−−→ a : deq . 2
vis−−→ b : deq . 2.

The history of Fig. 4(d) satisfies CM . For example, the
return values of a : p.deq . 2 and b : p.deq . 1 can be
justified by serializations 〈q.enq(2) p.enq(1) a : p.deq .
1 p.enq(2) a : p.deq . 2〉 and 〈p.enq(2) q.enq(2) q.deq .
2 p.enq(1) b : p.deq . 2 b : p.deq . 1〉, respectively.

5.4 Strong Causal Consistency
We strengthen CM to SCC (Strong Causal Consistency) by
further requiring each session to be consistent with respect
to the return values provided by other sessions. Formally,
we have V (e) = vis−1(e).

Definition 16 (Strong Causal Consistency).

SCC , (hb ⊆ vis)∧(vis ⊆ ar)∧(V (e) = vis−1(e))∧RVAL.

Example 10. The history of Fig. 4(f) satisfies SCC . The
return values of deq . 1, b : deq . 2, b : deq . 3, a : deq . 3,
and a : deq . 2 can be justified by the serializations
〈enq(1) deq . 1〉, 〈enq(1) deq . 1 enq(2) b : deq . 2〉,
〈enq(1) deq . 1 enq(2) b : deq . 2 enq(3) deq . 3〉,
〈enq(1) deq . 1 enq(3) a : deq . 3〉 and 〈enq(1) deq .
1 enq(3) enq(2) a : deq . 3 a : deq . 2〉, respectively.

The history of Fig. 4(c) does not satisfy SCC . (For now,
ignore enq(2) ar−→ enq(1) and a ar−→ bwhich are for WCCv .)
Specifically, being aware of the return values of a : deq . 2
and b : deq . 2, deq . ⊥ is unjustifiable: it is impossible to
construct a valid serialization consisting of all the events,
since 2 is dequeued twice.

5.5 Weak Causal Convergence
WCCv (Weak Causal Convergence) [2], [14] is the conver-
gent counterpart of WCC. It strengthens WCC by imposing
a total order over all events in an execution, which pro-
vides all sessions with a uniform way of resolving conflicts
caused by concurrent events. Consequently, the return value
rval(e) of each event e is evaluated on the set vis−1(e) of
events visible to e, ordered by this common total order ar,
while ignoring all of their return values.

Definition 17 (Weak Causal Convergence).

WCCv , (hb ⊆ vis) ∧ (vis ⊆ ar ∧ to(ar, E))

∧ (V (e) = ∅) ∧ RVAL.

Example 11. Although the history of Fig. 4(b) satisfies
WCC , it does not satisfy WCCv . Specifically, the justi-
fication for the return value of b : deq . 2 requires

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

8

p.enq(1) q.enq(2)

q.deq ◃ 2 p.enq(2)

p.deq ◃ 2 p.deq ◃ 1

so,vis
ar

so,vis
ar

so,vis
ar

vis, ar

vis, ar

(a) Not WCC

enq(1) a : deq ◃ 2 b : deq ◃ 2

enq(2) a : deq ◃ 1 b : deq ◃ 1

so,vis
ar

so,vis
ar

so,vis
ar

so,vis
ar

vis,a
r

vis,arvis,ar vis,ar

(b) WCC but not CM nor WCCv

enq(1) a : deq ◃ 2

enq(2) b : deq ◃ 2 deq ◃⊥

so,vis
ar

so,vis
ar

so,vis
ar

vis,a
r vis,arar

ar

(c) CM and WCCv (with enq(2)
ar−→

enq(1) and a
ar−→ b) but not SCC

q.enq(2) p.enq(1) a : p.deq . 1 a : p.deq . 2

p.enq(2) q.deq . 2 b : p.deq . 2 b : p.deq . 1

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

vis,ar
vis,ar vis,ar

(d) CM but not CMv

enq(1) deq ◃ 1 a : deq ◃ 2

enq(2) b : deq ◃ 2

so
vis,ar

so
vis,ar

so
vis,ar

vis,arar ar

(e) CMv

enq(1) enq(3) a : deq . 3 a : deq . 2

deq . 1 enq(2)

b : deq . 2 b : deq . 3

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

v
i
s

a
r

v
i
s

a
r

vis,arvis,ar

vis,a
r

(f) SCC but not SCCv

enq(1) deq ◃ 2

enq(2) deq ◃ 1 deq ◃⊥

so,vis
ar

so,vis
ar

so,vis
ar

vis,arvis,a
r

vis,ar

vi
s,

arar

(g) SCCv

Fig. 4: Examples for causal consistency variants on objects of FIFO queue fq. Both p and q are of type fq in 4(a) and 4(d). The
queue q in other subfigures is implicitly assumed. In each history, events are grouped into sessions which are horizontally
laid out. The arrows for relations implied by transitivity are not drawn. We use labels, such as a and b, to make events
unique.

enq(1)
ar−→ enq(2), while the one for b : deq . 1 requires

enq(2)
ar−→ enq(1).

The history of Fig. 4(c) satisfies WCCv . The serialization
〈enq(2) enq(1) a : deq . 2〉 for justifying a : deq . 2,
the one 〈enq(2) b : deq . 2〉 for b : deq . 2, and the
one 〈enq(2) enq(1) a : deq . b : deq . deq . ⊥〉
for deq . ⊥ agree with a common total order ar, e.g.,
〈enq(2) enq(1) a : deq . 2 b : deq . 2 deq .⊥〉.

5.6 Causal Memory Convergence

CMv (Causal Memory Convergence) is the convergent
counterpart of CM, which requires ar to be a total order.

Definition 18 (Causal Memory Convergence).

CMv , (hb ⊆ vis) ∧ (vis ⊆ ar ∧ to(ar, E))

∧ (V (e) = so−1(e)) ∧ RVAL.

Example 12. Although the history of Fig. 4(d) satisfies CM ,
it does not satisfy CMv which enforces a total order ar over
all events. As shown in Example 9, the justification for the
return value of a : p.deq.2 requires p.enq(1) ar−→ p.enq(2),
while the justification for the return value of b : p.deq . 1
requires p.enq(2) ar−→ p.enq(1).

The history of Fig. 4(e) satisfies CMv : the serialization
〈enq(1) deq . 1〉 for justifying the return value of deq . 1,
the one 〈enq(1) deq . 1 enq(2) a : deq . 2〉 for a : deq . 2,
and the one 〈enq(2) b : deq . 2〉 for b : deq . 2 agree with
a common total order ar, e.g., 〈enq(1) deq . 1 enq(2) a :
deq . 2 b : deq . 2〉.

5.7 Strong Causal Convergence
SCCv (Strong Causal Convergence) is the convergent coun-
terpart of SCC, which further requires ar to be a total order.

Definition 19 (Strong Causal Convergence).

SCCv , (hb ⊆ vis) ∧ (vis ⊆ ar ∧ to(ar, E))

∧ (V (e) = vis−1(e)) ∧ RVAL.

Example 13. Although the history of Fig. 4(f) satisfies SCC ,
it does not satisfy SCCv . Specifically, the justification for the
return value of a : deq.2 requires enq(3) ar−→ enq(2), while
the one for b : deq . 3 requires enq(2) ar−→ enq(3).

The history of Fig. 4(g) satisfies SCCv . For deq . ⊥ to
return ⊥, it must be aware of the event deq . 2 and by tran-
sitivity all other events. It can be justified by the serialization
〈enq(1) enq(2) deq.1 deq.2 deq.⊥〉. So, with deq.1 vis−−→
deq . 2 and enq(1)

ar−→ enq(2), deq . 1 and deq . 2 can be
justified by the serializations 〈enq(1) enq(2) deq . 1〉 and
〈enq(1) enq(2) deq . 1 deq . 2〉, respectively.

6 CAUSAL CONSISTENCY: CASE STUDY ON MON-
GODB
In this section, we prove that the causal consistency protocol
of MongoDB [23] satisfies CMv . MongoDB is a distributed
database supporting data replication and sharding [23]. It is
document-oriented, where a document is an ordered set of
key-value pairs. Thus, for simplicity, we model MongoDB
as a typical key-value store, which provides GET(k) and
PUT(k, v) operations to clients. We focus on the causal
consistency protocol, called MongoDB-CC , of MongoDB in
the failure-free sharded cluster deployment, where each shard

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

9

TABLE 3: Notations used in MongoDB-CC .

Notations Description

ctc the greatest cluster time known by client c
otc the last operation time at client c

cts cluster time at server s
aots the last applied operation time at server s
clocks current physical clock at server s
oplogs operation log at server s

CLUSTER(s) the cluster that s belongs to
PRIMARY(s) the primary node in CLUSTER(s)
ISPRIMARY(s) whether s is the primary node in CLUSTER(s)
ISSECONDARY(s) whether s is a secondary node in CLUSTER(s)

k, v key, value
ct, ot, aot cluster time, operation time, applied operation time
oplog oplog

is replicated in a cluster consisting of a primary node and
several secondary nodes. Only primary nodes can accept
PUT operations from clients. Table 3 provides a summary
of notations used in the protocol. We reference pseudocode
lines using the format algorithm#:line#.

6.1 States
6.1.1 Logical Clocks and Cluster Time
MongoDB-CC uses hybrid logical clocks (HLC) [24]. An
HLC is a pair (sec, counter) of physical time (in seconds)
and a counter to distinguish operations that occurred within
the same second. HLCs are compared lexicographically.

The cluster time is the time value of a node’s logical
clock [23]. It ticks (Line 4:1) only when a PUT operation is
applied in the primary node of a cluster (Line 2:13). Nodes
maintain and distribute their greatest known cluster time
via messages.

6.1.2 Client and Server States
Each client c keeps track of the greatest known cluster time
ctc. It also maintains the timestamp of its last operation,
denoted otc, capturing the client’s causal dependencies.

Each server s keeps track of the greatest known cluster
time cts. It uses an append-only operation log oplogs to
record the operations, as well as their timestamps, applied
at s. Additionally, it maintains in aots the timestamp of the
last operation applied at s.

6.2 Protocol
Algorithms 1 and 2 show the core of MongoDB-CC, han-
dling GET and PUT operations 5 at the client and server
side, respectively. The pseudocode for replication and clock
management are shown in Algorithms 3 and 4, respectively.

6.2.1 GET(k)

A client c sends a GET request, containing the key k, its
greatest known cluster time ctc, and its last operation time
otc, to a server s which stores key k. The server s first
updates its cluster time cts (Line 2:2). To guarantee causality,
it then checks whether the causal dependencies specified by
otc have been applied locally, by comparing its last applied

5. The GET and PUT operations are assumed to be executed atomi-
cally. The implementation issues about multi-thread concurrency and
synchronization are left unspecified.

Algorithm 1 Client operations at client c.
1: function GET(k)
2: s← a server storing key k
3: 〈v, ct, ot〉 ← s.GET-REQUEST(k, ctc, otc)
4: ctc ← max(ctc, ct)
5: otc ← ot . ts(GET)← (otc, s), dt(GET)← otc
6: return v

7: function PUT(k, v)
8: s← the primary node storing key k
9: 〈ct, ot〉 ← s.PUT-REQUEST(k, v, ctc)

10: ctc ← ct
11: otc ← ot . ts(PUT)← (otc, s), dt(PUT)← otc
12: return ok

Algorithm 2 Server operations at server s.

stores[k]← 0 for each key k . Initialization
1: function GET-REQUEST(k, ct, ot)
2: cts ← max(cts, ct)
3: if aots < ot then
4: PRIMARY(s).NOOP(cts, ot) . for liveness
5: if ISSECONDARY(s) then
6: repeat
7: s.REPLICATE()
8: until aots ≥ ot

9: v ← stores[k]
10: return 〈v, cts, aots〉
11: function PUT-REQUEST(k, v, ct)
12: cts ← max(cts, ct)
13: cts ← TICK()
14: aots ← cts
15: stores[k]← v
16: oplogs ← oplogs ◦ 〈k, v, aots〉
17: return 〈cts, aots〉 . cts = aots

operation time aots with ot← otc (Line 2:3). If aots < ot and
s is a secondary node (Line 2:5), the server keeps replicating
oplog from its primary node until aots ≥ ot (Line 2:8). To
ensure liveness, we allow the primary node to catch up by
keeping applying NO-OP (Line 4:6) in case aots < ot holds
in the primary node (Line 2:4). (Note that if aots ≥ ot and s
is the primary node, Line 2:4 does nothing.) Once aots ≥ ot
holds, the server s retrieves the value v of key k in local
stores (Line 2:9). Finally, the value v, as well as cts and aots
are returned to the client (Line 2:10). Upon receiving the
reply, the client updates its ctc and otc accordingly.

6.2.2 PUT(k, v)

A client sends a PUT request, containing the key k, the value
v, and its greatest known cluster time ctc, to the server s
which is the primary node storing key k. The server s first
updates its cluster time cts (Line 2:12). Then it ticks its cts
(Line 2:13) and advances its last applied operation time aots
to the new cts (Line 2:14). After being applied in local stores
(Line 2:15), the PUT operation, as well as its operation time
aots, is appended to oplogs (Line 2:16). Finally, both cts and
aots are returned to the client (Line 2:17). Upon receiving
the reply, the client updates its ctc and otc accordingly.

6.2.3 Replication
In a cluster, each secondary node s periodically pulls the
oplog entries with greater operation time than aots from
the primary node (Line 3:3). The retrieved entries in oplog
are appended to local oplogs (Line 3:8), and the operations
in it are applied in local stores in increasing order of their

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

10

Algorithm 3 Replication at server s.
1: function REPLICATE() . Run periodically
2: if ISSECONDARY(s) then
3: 〈oplog, ct〉 ← PRIMARY(s).PULL-OPLOG(cts, aots)
4: cts ← max(cts, ct)
5: for 〈k, v, ot〉 ∈ oplog do . in ot order
6: stores[k]← v
7: aots ← ot

8: oplogs ← oplogs ◦ oplog
9: function PULL-OPLOG(ct, aot)

10: cts ← max(cts, ct)
11: oplog ← oplog entries after aot in oplogs
12: return 〈oplog, cts〉

Algorithm 4 Clock management at server s.
1: function TICK()
2: if cts.sec ≥ clocks then
3: return 〈cts.sec, cts.counter + 1〉
4: else
5: return 〈clocks, 0〉
6: function NOOP(ct, ot)
7: cts ← max(cts, ct)
8: while aots < ot do
9: cts ← TICK()

10: aots ← cts
11: oplogs ← oplogs ◦ 〈NO-OP, aots〉

operation times (Line 3:5). In the end, aots refers to the op-
eration time of the last entry in its current oplogs (Line 3:7).
Additionally, secondary nodes and the primary node also
distribute and keep track of their greatest known cluster
time during replication.

6.3 Correctness Proof
We prove that MongoDB-CC satisfies CMv (Definition 18)
by showing that every history H = (E,op,rval,so) of
MongoDB-CC satisfies CMv with respect to kvs (Exam-
ple 4). The key is to extract appropriate visibility and ar-
bitration relations from H such that (H,vis,ar) |= CMv.

In the following, we use G, P , Pk and Gk to denote the
set of GET events, the set of PUT events, the set of PUT events
on key k, and the set of GET events on key k, respectively.
For a PUT(k, v) event e, we write e . 〈k, v, ot〉 to emphasize
that it is associated with an operation time at Line 2:16. For
a GET(k) event e, we write e . 〈k, v, ot〉 to denote that it
retrieves the value v with operation time ot (Line 2:9).

6.3.1 Timestamps
We first define timestamp ts(e) for each event e as follows.

Definition 20 (Timestamps). For an event e issued by client
c, ts(e) = (otc, s), where otc is the last operation time of
client c at Line 1:5 for GET and Line 1:11 for PUT, and s is
the identifier of the server processing e (Lines 1:2 and 1:8).

Timestamps are compared lexicographically (we assume
a total order over the set of identifiers of servers). For
notational convenience, we further define the dependency
time dt(e) , ts(e).otc for each event e. Note that for a PUT
event e, dt(e) is its operation time assigned at Line 2:16.

6.3.2 Visibility
The visibility relation vis is based on the following read-
from relation rf.

Definition 21 (Read-from Relation). (e, f) ∈ rf if and only
if e = PUT(k, v) . 〈k, v, ot〉 and f = GET(k) . 〈k, v, ot〉 for
some key k.

Definition 22 (Visibility). The visibility relation vis is the
transitive closure of the union of session order so and read-
from relation rf. Formally, vis = (so ∪ rf)+.

By induction on the structure of vis, we can show that
vis is reflected in dt. Formally,

Lemma 1. Let e1 and e2 be two events of history H . We
have

e1
vis−−→ e2 =⇒ dt(e1) ≤ dt(e2).

Furthermore,

e1
vis−−→ e2 ∧ e2 ∈ P =⇒ dt(e1) < dt(e2).

Proof. By induction on the structure of vis.

• CASE I: e1
soc−−→ e2 for some client c.

– otc is monotonically increasing. So dt(e1) ≤ dt(e2).
– If e2 is a PUT, otc is increased due to the ticking at

Line 2:13. So dt(e1) < dt(e2).

• CASE II: e1
rf−→ e2.

– According to the waiting condition at Line 2:3, otc ≥
dt(e1) always holds when e2 has been performed at
Line 1:5. So dt(e1) ≤ dt(e2).

– e2 is a GET.

• CASE III: There is some event e′ such that e1
vis−−→

e′
vis−−→ e2.

– By induction, we have dt(e1) ≤ dt(e′) ≤ dt(e2).
– By induction, if e2 is a PUT, dt(e1) ≤ dt(e′) <
dt(e2).

Theorem 2. The visibility relation vis is a partial order.

Proof. It suffices to prove that vis is acyclic (thus, ir-
reflexive). Suppose for a contradiction that there is a cycle
C : e1

vis−−→ e2
vis−−→ · · · vis−−→ oi

vis−−→ e1. By Lemma 1,
all events in C are GET and they have the same dt. Fur-
thermore, all of them cannot occur at the same client, as
this would imply a cycle in session order. Assume e and
e′ in C are on different clients. Since e vis−−→ e′ and both
of them are GET, there must be some PUT e′′ such that
e

vis−−→ e′′
vis−−→ e′. By Lemma 1, dt(e) < dt(e′′) ≤ dt(e′),

implying dt(e) 6= dt(e′), a contradiction.

Theorem 3. hb ⊆ vis.

Proof. By definitions of hb and vis, we have

hb , (so ∪ vis)+ = vis+ = vis.

Clearly, hb ⊆ vis.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

11

6.3.3 Arbitration
We construct the arbitration relation ar which is a total
order over all events as follows.

Definition 23 (Arbitration). Order the PUT events in ar by
their timestamps (Definition 20). For each client c, we insert
its GET events one by one in session order: each GET event
g on client c is placed immediately after the later (in ar) of
(1) the previous (in so) event of g on client c, if any; and
(2) the PUT event p (in ar) such that p rf−→ g.

Theorem 4. vis ⊆ ar.

Proof. Let e1 and e2 be two events of history H . We need to
show that if e1

vis−−→ e2, then e1
ar−→ e2. By induction on the

structure of vis.
• CASE I : e1

so−→ e2 on the same client. By Condition 1 of
ar, e1

ar−→ e2.
• CASE II : e1

rf−→ e2. By Condition 2 of ar, e1
ar−→ e2.

• CASE III : There is some event e′ such that e1
vis−−→

e′
vis−−→ e2. By induction and the transitivity of vis and

ar, we have e1
ar−→ e′

ar−→ e2.

6.3.4 Return Values
We need to prove that (H,vis,ar) |= RVAL(kvs, V), where
V (e) = so−1(e) for each event e. The key is to show, for
each GET event e, that

∀e ∈ G : rval(e) ∈ evalkvs(ctxtA(e, V),op(e)),

where ctxtA(e, V) = A|vis−1(e),op,rval|so−1(e),vis,ar
. Sup-

pose e is issued by client c. Define cP , so−1(e) ∪
(vis−1(e) ∩ P) and Se , ar|cP .

Theorem 5. Se is a valid serialization of cP .

Proof. Let S�e , Se ◦ 〈e〉, where ‘◦’ denotes concatenation.
We need to show that each GET(k) event in S�e returns the
value written by the most recently preceding PUT event on
key k. Consider g = GET(k) on client c in S�e. Suppose
p

rf−→ g and p is on client i. We must show that no other
PUT(k,) events place in between p and g in S�e. Suppose
by contradiction that event p′ = PUT(k,) on client j does.
We distinguish between j = c and j 6= c.
• CASE I : j = c (Fig. 5(a)). Since p

ar−→ p′, ts(p) <
ts(p′). Since p and p′ are applied on the same primary
node, dt(p) < dt(p′). Since p′ ar−→ g and j = c, p′ so−→ g.
So, when g is issued by client c, otc ≥ dt(p′) > dt(p) at
Line 1:3. By Line 2:8, it is impossible for g to read from
p at Line 2:9.

• CASE II : j 6= c. Since p′ ar−→ g, there is some event o on
client c such that p′ ar−→ o

ar−→ g. Let o be the first such
event. We perform a case analysis according to whether
o is a PUT or a GET.
– CASE II-1 : o ∈ Pk′ (Fig. 5(b)). Since p ar−→ p′

ar−→ o,
ts(p) < ts(p′) < ts(o). Since both p and p′ are
applied on the same primary node, dt(p) < dt(p′) ≤
dt(o). Since o so−→ g, when g is issued by client c,
otc ≥ dt(o) > dt(p) at Line 1:3. By Line 2:8, it is
impossible for g to read from p at Line 2:9.

– CASE II-2 : o ∈ Gk′ . We consider two cases.

∗ CASE II-2-A : There are no events between p′ and
o in S�e (Fig. 5(c)). By construction of Se, k′ = k

and p′
rf−→ o. Therefore, dt(p) < dt(p′) ≤ dt(o).

By a similar argument in CASE II-1, it is impossi-
ble for g to read from p.
∗ CASE II-2-B : There is a set, denoted B, of events

between p′ and o in S�e (Fig. 5(d)).By the choice
of o, B contains no events on client c. Therefore,
all events in B are PUT. Moreover, there exists
some event p′′ ∈ B such that p′′ rf−→ o; other-
wise, o should be placed before p′ in ar. Then,
dt(p) < dt(p′) ≤ dt(p′′) ≤ dt(o). By a similar
argument in CASE II-1, it is impossible for g to
read from p.

7 PIPELINED CONSISTENCY: MODELS

7.1 Overview

Pipelined consistency extends the PRAM [12] consistency
for shared memory to support arbitrary replicated data
types [20]. It requires the updates on a single session are
observed by all sessions in the session order they were
issued, whereas updates from different sessions may be
observed in different orders by different sessions.

In analogous to causal consistency, Table 2 summa-
rizes six variants of pipelined consistency, namely Weak
Pipelined Consistency (WPC), Pipelined Consistency (PC),
Strong Pipelined Consistency (SPC), Weak Pipelined Con-
vergence (WPCv), Pipelined Convergence (PCv), and
Strong Pipelined Convergence (SPCv). Fig. 6 shows the
relative strength of these variants and also relates them to
their counterparts of causal consistency. These variants of
pipelined consistency are weaker than their counterparts
of causal consistency, since in the visibility relation they
enforce only the session order (i.e., so ⊆ vis), instead of
the happens-before order among events (i.e., hb ⊆ vis).
Fig. 7 gives examples of pipelined consistency on objects of
FIFO queues. We explain them in the following subsections.

7.2 Weak Pipelined Consistency

With V (e) = ∅, WPC allows each event e to ignore all the
return values of its visible events.

Definition 24 (Weak Pipelined Consistency).

WPC , (so ⊆ vis) ∧ (vis ⊆ ar) ∧ (V (e) = ∅) ∧ RVAL.

Example 14. The history of Fig. 7(a) does not satisfy WPC .
Intuitively, events enq(1), enq(3), a : deq . 1, and deq . 3
must be visible to b : deq.1. Since vis ⊆ ar, it is impossible
for b : deq . 1 to dequeue 1 from the FIFO queue q.

The history of Fig. 7(b) satisfies WPC . The return values
of a : deq.1, b : deq.1, and deq.3 can be justified by the se-
rializations 〈enq(1) enq(3) a : deq . 1〉, 〈enq(3) enq(1) a :
deq. b : deq.1〉, and 〈enq(1) enq(2) enq(3) a : deq. b :
deq . deq . 3〉, respectively.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

12

j = c : p′ = PUT(k,_) g = GET(k)

i : p = PUT(k,_)

so
vis,ar

ar

rf,vis,ar

(a) CASE I : j = c.

c : o = PUT(k′,_) g = GET(k)

j ̸= c : p′ = PUT(k,_)

i : p = PUT(k,_)

so
vis,ar

ar
ar

rf,v
is,a

r

(b) CASE II-1 : j 6= c, o = PUT(k′,).

c : o = GET(k′) g = GET(k)

j ̸= c : p′ = PUT(k,_)

i : p = PUT(k,_)

so,vis,ar
ar

ar

rf,v
is,a

r

(c) CASE II-2-A : j 6= c, o = GET(k′). There are no events
between p′ and o in S�e.

c : o = GET(k′) g = GET(k)

q ̸= c : p′′ = PUT(k′,_)

j ̸= c : p′ = PUT(k,_)

i : p = PUT(k,_)

so,vis,ar

ar
ar

rf,v
is,a

r

rf, vis, ar

(d) CASE II-2-B : j 6= c, o = GET(k′). There is a set of events
between p′ and o in S�e.

Fig. 5: Illustration of the proof of Theorems 5.

so ⊆ vis
vis ⊆ ar
V [e] = ∅
RVAL
WPC

WCC

so ⊆ vis
vis ⊆ ar

V [e] = so−1(e)
RVAL
PC

CM

so ⊆ vis
vis ⊆ ar ∧ to(ar, E)

V [e] = so−1(e)
RVAL
PCv

CMv

so ⊆ vis
vis ⊆ ar

V [e] = vis−1(e)
RVAL
SPC

SCC

so ⊆ vis
vis ⊆ ar ∧ to(ar, E)
V [e] = vis−1(e)

RVAL
SPCv

SCCv

so ⊆ vis
vis ⊆ ar ∧ to(ar, E)

V [e] = ∅
RVAL
WPCv

WCCv

Fig. 6: Pipelined consistency variants and their relative
strength.

7.3 Pipelined Consistency

With V (e) = so−1(e), PC requires that each session is con-
sistent with respect to the previous return values provided.

Definition 25 (Pipelined Consistency).

PC , (so ⊆ vis)∧(vis ⊆ ar)∧(V (e) = so−1(e))∧RVAL.

Example 15. Although the history of Fig. 7(b) satisfies WPC,
it does not satisfy PC . Specifically, being aware of the return
value of a : deq.1, b : deq.1 is unjustifiable: it is impossible
to construct a valid serialization consisting of events enq(1),
enq(3), a : deq.1, and b : deq.1, since 1 is dequeued twice.

The history of Fig. 7(d) satisfies PC . For example, the
return values of a : deq . 2 and b : deq . 1 can be justified
by the serializations 〈enq(1) enq(2) a : deq . 1 a : deq . 2〉
and 〈enq(2) enq(1) b : deq . 2 b : deq . 1〉, respectively.

7.4 Strong Pipelined Consistency

With V (e) = vis−1(e), SPC further requires each session to
be also consistent with respect to the return values provided
by other sessions.

Definition 26 (Strong Pipelined Consistency).

SPC , (so ⊆ vis) ∧ (vis ⊆ ar)

∧ (V (e) = vis−1(e)) ∧ RVAL.

Example 16. The history of Fig. 7(c) does not satisfy SPC .
(For now, ignore enq(1)

ar−→ enq(2) and b : deq . 1
ar−→

a : deq . 1 which are for WPCv .) Specifically, being aware
of the return values of a : deq . 1 and b : deq . 1,
deq .⊥ is unjustifiable: it is impossible to construct a valid
serialization consisting of all the events, since 1 is dequeued
twice.

The history of Fig. 7(f) satisfies SPC . The return values
of p.deq . ⊥, q.deq . 2, q.deq . 1, and p.deq . 3 can
be justified by the serializations 〈q.enq(1) p.deq . ⊥〉,
〈p.enq(1) q.enq(2) q.deq . 2〉, 〈p.enq(1) q.enq(2) q.deq .
2 q.enq(1) q.deq . 1〉, and 〈q.enq(1) p.deq .
⊥ p.enq(3) p.enq(1) q.enq(2) p.deq . 3〉, respectively.

7.5 Weak Pipelined Convergence
With ar being a total order, WPCv is the convergent coun-
terpart of WPC.

Definition 27 (Weak Pipelined Convergence).

WPCv , (so ⊆ vis) ∧ (vis ⊆ ar ∧ to(ar, E))

∧ (V (e) = ∅) ∧ RVAL.

Example 17. Although the history of Fig. 7(b) satisfy WPC,
it does not satisfy WPCv . Specifically, the justification for
the return value of a : deq . 1 requires enq(1) ar−→ enq(3),
while the one of b : deq . 1 requires enq(3) ar−→ enq(1).

The history of Fig. 7(c) satisfies WPCv . The serialization
〈enq(1) enq(2) b : deq . 1〉 for justifying b : deq . 1, the
one 〈enq(1) a : deq . 1〉 for justifying a : deq . 1 and the
one 〈enq(1) enq(2) b : deq . a : deq . deq . ⊥〉 for
justifying deq .⊥ agree with a common total order ar, e.g.,
〈enq(1) enq(2) b : deq . 1 a : deq . 1 deq .⊥〉.

7.6 Pipelined Convergence
With ar being a total order, PCv is the convergent counter-
part of PC.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

13

enq(1) enq(3)

a : deq . 1 deq . 3 b : deq . 1

so
vis,ar

so
vis,ar

so
vis,ar

v
i
s
,a
r

v
i
s
,a
r

vis,ar

vis,ar

(a) not WPC

enq(1) enq(2)

enq(3) a : deq . 1 b : deq . 1 deq . 3

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

vis,ar
vis,ar

vis,ar
vis,ar

(b) WPC but not PC nor WPCv

enq(1) a : deq . 1

enq(2) b : deq . 1 deq .⊥

so
vis,ar

so
vis,ar

so
vis,ar

vis,ar

vis,ar

a
r

a
r vis,ar

(c) PC and WPCv (with enq(1)
ar−→ enq(2)

and b
ar−→ a) but not SPC

enq(1) a : deq ◃ 1 a : deq ◃ 2

enq(2) b : deq ◃ 2 b : deq ◃ 1

so,vis
ar

so,vis
ar

so,vis
ar

so,vis
ar

vis,arvis,ar

(d) PC but not PCv

enq(1) enq(2) a : deq . 2

deq . 1 b : deq . 2

so
vis,ar

so
vis,ar

so
vis,ar

v
i
s
,a
r vis,ar

vis,
ar

vis,ar

(e) PCv

p.enq(1) q.enq(2) p.deq . 3

q.deq . 2 q.deq . 1

q.enq(1) p.deq .⊥ p.enq(3)

so,vis,ar so,vis,ar

so,vis,ar

so,vis,ar so,vis,ar

vis,ar

v
i
s

a
r

v
i
s

a
r

v
i
s

a
r vi

s,a
r

v
i
s
,a
rvis,

ar vis,ar

(f) SPC but not SPCv

enq(1) deq . 3 deq . 2

enq(3) deq . 1 enq(2)

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

vi
s,a

r vis,ar
vi
s,a

ra
r

v
i
s
,a
r

v
i
s
,a
r

vis,
ar

(g) SPCv

Fig. 7: Examples for pipelined consistency variants on objects of FIFO queue fq. Both p and q are of type fq in 7(f). The
queue q in other subfigures is implicitly assumed.

Definition 28 (Pipelined Convergence).

PCv , (so ⊆ vis) ∧ (vis ⊆ ar ∧ to(ar, E))

∧ (V (e) = so−1(e)) ∧ RVAL.

Example 18. Although the history of Fig. 7(d) satisfies PC ,
it does not satisfy PCv which enforces a total order ar over
all events. As shown in Example 15, the justification for the
return value of a : deq.2 requires enq(1) ar−→ enq(2), while
the justification for the return value of b : deq . 1 requires
enq(2)

ar−→ enq(1).
The history of Fig. 7(e) satisfies PCv . The serializa-

tion 〈enq(1) deq . 1〉 for justifying deq . 1, the one
〈enq(1) enq(2) deq . a : deq . 2〉 for justifying
a : deq . 2, and the one 〈enq(1) enq(2) deq . 1 b : deq . 2〉
for justifying b : deq . 2 agree with a total order, e.g.,
〈enq(1) enq(2) deq . 1 a : deq . 2 b : deq . 2〉.

7.7 Strong Pipelined Convergence
With ar being a total order, SPCv is the convergent coun-
terpart of SPC.

Definition 29 (Strong Pipelined Convergence).

SPCv , (so ⊆ vis) ∧ (vis ⊆ ar ∧ to(ar, E))

∧ (V (e) = vis−1(e)) ∧ RVAL.

Example 19. Although the history of Fig. 7(f) satisfies SPC ,
it does not satisfy SPCv . Specifically, the justification for the
return value of q.deq . 1 requires q.enq(2) ar−→ q.enq(1),
while the one for p.deq . 3 requires q.enq(1) ar−→ q.enq(2).

The history of Fig. 7(g) satisfies SPCv . For deq . 2 to
return 2, it must be aware of the event deq . 1. It can
be justified by the serialization 〈enq(3) enq(1) deq .
3 deq . 1 enq(2) deq . 2〉. So, with enq(3)

ar−→ enq(1)

and deq . 3
vis−−→ deq . 1, deq . 3 and deq . 1 can be

justified by serializations 〈enq(3) enq(1) deq . 3〉 and
〈enq(3) enq(1) deq . 3 deq . 1〉, respectively.

TABLE 4: Notations used in GSP.

Notations Description

knownc prefix of total update sequence known by client c
pendingc local pending updates at client c
roundc round number at client c

sequence operation sequence at the server
updates operations that have not been replicated

k, v, r key, value, round
c, cl client
log operation log

8 PIPELINED CONSISTENCY: CASE STUDY ON
GSP

In this section, we show that although the failure-free client-
server implementation of GSP (Global Sequence Proto-
col) [25] satisfies WCCv [2, Section 10.4.2], it does not satisfy
PCv . GSP requires clients eventually agree on a global
sequence of all updates, while seeing a subsequence at any
time. To this end, the server uses Reliable Total Order Broad-
cast (RTOB) [26] to reliably deliver messages to all clients in
the same total order. We model the system as a key-value
store, which supports GET(k) and PUT(k, v) operations. Ta-
ble 4 provides a summary of notations used in the protocol.

8.1 States

The server s maintains a sequence sequence of updates
received from all clients and a set updates of updates that
wait to be acknowledged and broadcast.

Each client c maintains two operation sequences, called
knownc and pendingc, that stores the currently known
prefix of the global update sequence sequence and the local
pending updates that have not been acknowledged by the
server, respectively.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

14

Algorithm 5 Client operations at client c.
1: function GET(k)
2: log ← knownc ◦ pendingc
3: 〈k, v, r, cl〉 ← UPDATES(k, log)
4: return v

5: function PUT(k, v)
6: roundc ← roundc + 1
7: pendingc ← pendingc ◦ 〈k, v, roundc, c〉
8: send PUT-REQUEST(k, v, roundc, c) to server s

9: function REPLICATE(k, v, r, cl)
10: knownc ← knownc ◦ 〈k, v, r, cl〉
11: if cl = c then
12: pendingc ← pendingc[1..]

Algorithm 6 Server operations at server s.
1: function PUT-REQUEST(k, v, r, c)
2: sequence← sequence ◦ 〈k, v, r, c〉
3: updates← updates ∪ 〈k, v, r, c〉
4: function PROPAGATE-UPDATES() . Run periodically
5: for 〈k, v, r, c〉 ∈ updates do
6: send REPLICATE(k, v, r, c) to all clients by RTOB
7: updates← ∅

8.2 Protocol

To issue a GET operation, a client c combines the updates in
knownc and pendingc and determines the return value using
an auxiliary function UPDATES. To issue a PUT operation,
client c increments its local round number roundc, appends
the update to pendingc, and sends it to the server.

When the server s receives a PUT-REQUEST from client
c, it appends the PUT operation to sequence, and adds it
into updates. The server periodically replicates the updates
in updates to all clients. When a client c receives an update,
it appends it to knownc. If this update is originated from
the client c, it is removed from pendingc since it has been
acknowledged by the sever.

c1 : y.PUT(1) x.GET . 0 x.GET . 1

c2 : x.PUT(1) y.GET . 0 y.GET . 1

so
vis,ar

so
vis,ar

so
vis,ar

so
vis,ar

vis,arvis,a
r

Fig. 8: A history for a kvs that can be produced by the
implementation of GSP but does not satisfy PCv.

8.3 The Implementation of GSP does not Satisfy PCv

Consider the history of Figure 8. It consists of two clients c1
and c2 which issue GET and PUT operations on keys x and
y. The implementation of GSP may produce this history as
follows. The sequence at the server is 〈y.PUT(1) x.PUT(1)〉.
When x.GET . 0 and x.GET . 1 are issued on client c1, the
values of knownc1 are 〈y.PUT(1)〉 and 〈y.PUT(1) x.PUT(1)〉,
respectively, and both values of pendingc1 are empty. When
y.GET . 0 and y.GET . 1 are issued on client c2, the values of
knownc2 are empty and 〈y.PUT(1)〉, respectively, and both
values of pendingc2 are 〈x.PUT(1)〉.

The history does not satisfies PCv . Specifically, being
aware of the return value of x.GET . 0, the justification
for the return value of x.GET . 1 requires y.PUT(1)

so,ar−−−→
x.GET . 0

ar−→ x.PUT(1). However, being aware of the return

value of y.GET . 0, the justification for the return value of
y.GET . 1 requires x.PUT(1)

so,ar−−−→ y.GET . 0
ar−→ y.PUT(1).

9 PIPELINED CONSISTENCY: CASE STUDY ON
RA-LINEARIZABILITY

Replication-Aware linearizability (RA-Linearizability), re-
cently proposed by Wang et al. [27], is a consistency model
tailored to Conflict-Free Replicated Data Types (CRDTs [28],
[29]). RA-Linearizability relaxes linearizability [30] in two
ways: (1) the linearization is required to be consistent with
visibility relation instead of the real-time returns-before re-
lation; (2) query events are allowed to see a subsequence,
rather than a prefix, of the linearization. In this section, we
show that RA-Linearizability implies WPCv, but not PCv.

Definition 30 (RA-Linearizability). Let h = (L, vis) be a
history of a CRDT6, where L is a set of Queries and
Updates events7 and vis is a partial order over L. The
history h satisfies RA-Linearizability w.r.t. a sequential spec-
ification Spec, if there exists a sequence seq such that
• seq is a total order over L;
• so ⊆ vis (we use sessions to denote the replicas);
• vis ∪ seq is acyclic; and
• for each query lq in L, the subsequence of updates

visible to lq together with lq , i.e., seq|vis−1(lq) ∩ Updates,
is admitted by Spec.

9.1 RA-Linearizability Implies WPCv

The definition of RA-Linearizability is “isomorphic” to that
of WPCv, in terms of the following three definitions.

Definition 31 (Visibility). vis , vis.

Definition 32 (Arbitration). ar , seq.

Definition 33. evalCRDT , Spec.

r1 : add(a, b)

r2 : add(a, c)

r3 : q1 : read . a · c q2 : read . a · c · b

vis,arv
i
sa
r

vis,ar

so
vis,ar

Fig. 9: A history for a list object l (implicitly assumed) that
satisfies RA-Linearizability but not PCv.

9.2 RA-Linearizability does not Imply PCv

Consider the history of Figure 9. It consists of three replicas
r1, r2, and r3 which perform operations on a list l of
characters. The list supports two operations8: (1) add(a, b)
which inserts the character b immediately after the character
a in the list, and (2) read which returns the list content.
Assume that the list l initially contains only the character a.

6. RA-Linearizability is compositional under some assumptions;
see [27, Section 5].

7. We do not consider query-update events and query-update rewrit-
ing; see [27, Definition 3.6].

8. We do not consider the remove operation in this example.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

15

The history satisfies RA-Linearizability. The total se-
quence seq can be 〈add(a, b) add(a, c) q1 : read . a · c q2 :

read . a · c · b〉. With add(a, c)
vis−−→ q1, add(a, b) vis−−→

q2, and add(a, c)
vis−−→ q2, the return values of q1 and

q2 can be justified by the subsequences 〈add(a, c)〉 and
〈add(a, b) add(a, c)〉, respectively.

However, the history does not satisfy PCv . Being aware
of the return value of q1, q2 is unjustifiable: q1 requires
add(a, b) be ordered after both add(a, c) and q1, but q2
requires add(a, b) be ordered before add(a, c).

10 RELATED WORK

The (vis, ar) specification framework for arbitrary eventu-
ally consistent replicated data types is proposed by Burck-
hardt et al. [1], [2]. It introduces the visibility and arbitrary
relations, which have been widely adopted in the literature.
Using this framework, Viotti et al. [10] provide a compre-
hensive overview of more than 50 different consistency
models in distributed systems. Emmi et al. [31] develop
a fine-grained consistency specification methodology for
software API via visibility relaxation. Recently, Almeida et
al. [16] proposed a framework for consistency models in
distributed systems using the traditional per-process serial-
izations augmented with visibility. In this paper, we extend
the (vis, ar) framework into a more generic one called
(vis, ar, V) for weakly consistent replicated data types. Our
framework is able to cover not only existing consistency
models but also new ones that are reasonable and promising
for practical usefulness.

Several works develop uniform frameworks for con-
sistency models in shared-memory multiprocessor systems.
Steinke et. al [19] present a unified theory of shared-memory
consistency models based on four consistency properties.
Enumerating all combinations of these four properties pro-
duces a lattice of consistency models. Alglave [32] provides
a generic framework for weak consistency models in mod-
ern multiprocessor architectures. It uses the global time
model and addresses the store atomicity relaxation.

Sequential consistency [21] is considered a strong con-
sistency model. It is used in coordination services, such as
ZooKeeper [33]. Interestingly, in our (vis, ar, V) framework,
three variants of sequential consistency with different V
functions turn out to be equivalent.

Causal consistency has been widely used in distributed
systems [13], [22], [34]. There are three known causal con-
sistency variants in the literature, namely WCC [14], [15],
CM [13], [14], [15], and WCCv [2], [14], [15]. By following
the recipes for our framework, we discover three new causal
consistency variants, namely SCC , CMv , and SCCv . We
show that the causal consistency protocol of MongoDB [23]
satisfies CMv . As far as we know, this is the first correctness
proof for MongoDB protocols against formal specifications.

Pipelined consistency [20] extends the PRAM consis-
tency [12] in shared-memory multiprocessor systems to
support arbitrary replicated data types in distributed sys-
tems. WPCv is a convergent variant of pipelined consis-
tency [20]. We discover four new pipelined consistency
variants, namely WPC , SPC , PCv , and SPCv . We show that
the implementation of GSP [25] does not satisfy PCv, and

that the RA-Linearizability [27] specification implies WPCv
but not PCv.

11 CONCLUSION AND FUTURE WORK

We extend the (vis, ar) specification framework for even-
tually consistent replicated data types into a more generic
one called (vis, ar, V) for weakly consistent replicated data
types. It covers both non-convergent consistency models
and the consistency models in which each event is required
to be aware of the return values of some or all events that
are visible to it. We also provide case studies on MongoDB,
the GSP protocol, and the RA-Linearizability specification
to demonstrate the usefulness of our framework. We are
implementing our specification framework in Alloy [35].

12 ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions. This work
was partially supported by the Natural Science Founda-
tion of Jiangsu Province (BK20242014) and the CCF-Tencent
Open Fund (Tencent RAGR20200201). Hengfeng Wei is the
corresponding author.

REFERENCES

[1] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski, “Replicated
data types: Specification, verification, optimality,” in Proceedings of
the 41st ACM Symposium on Principles of Programming Languages
(POPL’2014), pp. 271–284.

[2] S. Burckhardt, “Principles of eventual consistency,” Found. Trends
Program. Lang., vol. 1, no. 1-2, pp. 1–150, Oct. 2014.

[3] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, pp. 51–59, Jun. 2002.

[4] E. A. Brewer, “Towards robust distributed systems (abstract),”
in Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing (PODC’2000), pp. 7–7.

[5] D. Abadi, “Consistency tradeoffs in modern distributed database
system design: CAP is only part of the story,” IEEE Computer,
vol. 45, no. 2, pp. 37–42, Feb. 2012.

[6] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser, “Managing update conflicts in bayou,
a weakly connected replicated storage system,” in Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP’1995),
pp. 172–182.

[7] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1,
pp. 40–44, Jan. 2009.

[8] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems,” in Proceedings of the 1989 International Conference on
Management of Data (SIGMOD’1989), pp. 399–407.

[9] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, and
M. Zawirski, “Specification and complexity of collaborative text
editing,” in Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing (PODC’2016), pp. 259–268.

[10] P. Viotti and M. Vukolić, “Consistency in non-transactional dis-
tributed storage systems,” ACM Comput. Surv., vol. 49, no. 1, pp.
19:1–19:34, Jun. 2016.

[11] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[12] R. J. Lipton and J. S. Sandberg, PRAM: A scalable shared memory.
Princeton University, Department of Computer Science, 1988.

[13] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto,
“Causal memory: Definitions, implementation, and program-
ming,” Distributed Computing, vol. 9, no. 1, pp. 37–49, 1995.

[14] M. Perrin, A. Mostefaoui, and C. Jard, “Causal consistency: Be-
yond memory,” in Proceedings of the 21st ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP’2016).

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

16

[15] A. Bouajjani, C. Enea, R. Guerraoui, and J. Hamza, “On verifying
causal consistency,” in Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL’2017), pp. 626–638.

[16] P. Sérgio Almeida, “A framework for consistency models in dis-
tributed systems,” arXiv e-prints, pp. arXiv–2411, 2024.

[17] X. Jiang, H. Wei, and Y. Huang, “A generic specification frame-
work for weakly consistent replicated data types,” in Proceedings
of the 2020 International Symposium on Reliable Distributed Systems
(SRDS’2020), 2020, pp. 143–154.

[18] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan, “Declarative
programming over eventually consistent data stores,” in Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’2015). ACM, 2015, p. 413–424.

[19] R. C. Steinke and G. J. Nutt, “A unified theory of shared memory
consistency,” J. ACM, vol. 51, no. 5, pp. 800–849, Sep. 2004.

[20] M. Perrin, A. Mostefaoui, and C. Jard, “Update consistency for
wait-free concurrent objects,” in 2015 IEEE International Parallel
and Distributed Processing Symposium (IPDPS’2015), pp. 219–228.

[21] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs,” IEEE Transactions on
Computers c-28, vol. 9, pp. 690–691, 1979.

[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops,” in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP’2011), pp. 401–416.

[23] M. Tyulenev, A. Schwerin, A. Kamsky, R. Tan, A. Cabral, and
J. Mulrow, “Implementation of cluster-wide logical clock and
causal consistency in MongoDB,” in Proceedings of the 2019 Inter-
national Conference on Management of Data, pp. 636–650.

[24] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone,
“Logical physical clocks,” in International Conference on Principles
of Distributed Systems, 2014, pp. 17–32.

[25] S. Burckhardt, D. Leijen, J. Protzenko, and M. Fähndrich, “Global
sequence protocol: A robust abstraction for replicated shared
state,” in Proceedings of the 29th European Conference on Object-
Oriented Programming (ECOOP’2015), pp. 568–590.

[26] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing
Surveys (CSUR), vol. 36, no. 4, pp. 372–421, 2004.

[27] C. Wang, C. Enea, S. O. Mutluergil, and G. Petri, “Replication-
aware linearizability,” in Proceedings of the 40th ACM Conference on
Programming Language Design and Implementation (PLDI’2019), pp.
980–993.

[28] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Sys-
tems, 2011, pp. 386–400.

[29] P. S. Almeida, “Approaches to conflict-free replicated data types,”
ACM Comput. Surv., vol. 57, no. 2, pp. 51:1–51:36, Nov. 2024.

[30] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, no. 3, pp. 463–492, Jul 1990.

[31] M. Emmi and C. Enea, “Weak-consistency specification via visibil-
ity relaxation,” Proc. ACM Program. Lang., vol. 3, Jan. 2019.

[32] J. Alglave, “A shared memory poetics,” Ph.D. dissertation,
L’université Paris Denis Diderot, 2010.

[33] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-
free coordination for internet-scale systems,” in Proceedings of the
2010 USENIX Annual Technical Conference, 2010.

[34] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bie-
niusa, N. Preguiça, and M. Shapiro, “Cure: Strong semantics meets
high availability and low latency,” in Proceedings of the 36th Inter-
national Conference on Distributed Computing Systems (ICDCS’2016),
pp. 405–414.

[35] D. Jackson, “Alloy: A lightweight object modelling notation,”
ACM Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, Apr
2002.

Xue Jiang received the Ph.D. degree in
computer science from Nanjing Univer-
sity in 2024. She is currently a researcher
with School of Navigation Engineering at
Zhejiang International Maritime College.
Her research interests include distributed
computing and formal methods.

Hengfeng Wei received the Ph.D. de-
gree in computer science from Nanjing
University in 2016. He is currently a re-
search assistant with Software Institute
at Nanjing University. His research inter-
ests include distributed computing (es-
pecially the distributed data consistency
problems) and formal methods.

Yu Huang received the Ph.D. degree in
computer science from the University
of Science and Technology of China in
2007. He is currently a professor with
the Department of Computer Science and
Technology at Nanjing University, China.
His research interests include distributed
algorithms and formal methods.

Yuxing Chen received the Ph.D. degree
in computer science from the University
of Helsinki, Finland. He is now a senior
research engineer in database R&D de-
partment at Tencent, China. His research
interests include database performance
and evaluation, HTAP database design,
and distributed system design.

Anqun Pan is the technical director of
database R&D department at Tencent,
China. He has more than 15 years’ expe-
rience in the research and development
of distributed computing and storage
systems. He is currently responsible for
the research and development of dis-
tributed database system TDSQL.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3533546

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on March 03,2025 at 03:34:13 UTC from IEEE Xplore. Restrictions apply.

