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Abstract MongoDB is one of the first commercial distributed databases that support causal consistency. Its implemen-

tation of causal consistency combines several research ideas for achieving scalability, fault tolerance, and security. Given its

inherent complexity, a natural question arises: “Has MongoDB correctly implemented causal consistency as it claimed?”

To address this concern, the Jepsen team has conducted black-box testing of MongoDB. However, this Jepsen testing has

several drawbacks in terms of specification, test case generation, implementation of causal consistency checking algorithms,

and testing scenarios, which undermine the credibility of its reports. In this work, we propose a more thorough design of

Jepsen testing of causal consistency of MongoDB. Specifically, we fully implement the causal consistency checking algorithms

proposed by Bouajjani et al. and test MongoDB against three well-known variants of causal consistency, namely CC, CCv,

and CM, under various scenarios including node failures, data movement, and network partitions. In addition, we develop

formal specifications of causal consistency and their checking algorithms in TLA+ , and verify them using the TLC model

checker. We also explain how TLA+ specification can be related to Jepsen testing.
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1 Introduction

MongoDB is a general-purpose, document-oriented

distributed NoSQL database 1○. A MongoDB database

consists of a set of collections, a collection is a set of

documents, and a document is an ordered set of keys

with associated values [1].

MongoDB achieves scalability by partitioning the

data into shards and fault-tolerance by replicating each

shard across a set of nodes [2]. The most general Mon-

goDB deployment is a sharded cluster, where each

shard is a replica set consisting of a primary node and

several secondary nodes (see Fig.1). Client operations

are routed to corresponding shards via routers, which

have access to config servers that are deployed as a

replica set to store metadata for deployment. In a

replica set, only the primary can accept writes from

clients (via drivers), and it will record the writes in

its oplog. Secondaries can accept reads, and they will

replicate the primary’s oplog by periodically pulling it

from the primary.

According to the PACELC theorem [3], an extension

to the CAP theorem [4, 5], if there is a network partition

(P), a distributed system must trade off availability (A)
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Fig.1. MongoDB deployment as a sharded cluster.

and consistency (C); else (E), it must trade off latency

(L) and consistency (C). For high availability and low

latency, MongoDB offers relaxed consistency models.

Particularly, in version 3.6 released in November 2017,

MongoDB introduced causal consistency 2○. It provides

clients with session guarantees including read-your-

writes, monotonic-reads, monotonic-writes, and writes-

follow-reads [6] 3○. As the Jepsen team 4○ denoted, Mon-

goDB is one of the first commercial databases that im-

plement causal consistency [2].

Being a production database, MongoDB’s im-

plementation of causal consistency requires multi-

dimensional evaluation criteria on performance, scala-

bility, and security [2]. It combines several research

ideas, including hybrid logical clocks [7], explicit de-

pendency tracking [8, 9], Raft-based replication consen-

sus protocol [10], and signature-verification mechanism.

Given its inherent complexity, a natural question arises:

“Has MongoDB correctly implemented causal consis-

tency as it claimed in docs?” To address this con-

cern, the Jepsen team has conducted black-box test-

ing against MongoDB 3.6.4 and 4.0.0-rc1. The team

designed test cases that characterize client operations,

ran test cases in various scenarios, collected histories

of executions generated by MongoDB, and utilized an

adapted version of the causal consistency checking algo-

rithm proposed by Bouajjani et al. [11] to check whether

these histories satisfy causal consistency.

However, the official Jepsen testing has several

drawbacks in terms of specification, test case gene-

ration, implementation of causal consistency checking

algorithms, and testing scenarios, which undermine the

credibility of its reports. Specifically, the drawbacks are

as follows.

• There are several variants of causal consistency, in-

cluding causal consistency (CC) [12, 13], causal memory

(CM) [14], and causal convergence (CCv) [13]. Not all of

them are comparable [13]. However, the official Jepsen

testing does not clearly specify which causal consistency

variant it tests against the MongoDB database.

• In terms of test cases, the official Jepsen testing

uses independent keys. That is, each session accesses

only a single key and different sessions access different

keys. Concretely, each session performs a sequence of

five operations on its key: an initial read, a write of 1,

a read, a write of 2, and a final read. However, causal

consistency is not compositional [15], i.e., the composi-

tion of a set of keys satisfying causal consistency may

2○MongoDB 3.6.0-rc0. https://www.mongodb.com/blog/post/mongodb-360-rc0-is-released, Oct. 2021.
3○Causal Consistency. https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns/, Oct. 2021.
4○Jepsen. https://jepsen.io/, Oct. 2021.
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not be causally consistent. Thus, the test cases are too

restrictive for causal consistency checking.

• Given the specific test cases above, the official

Jepsen testing presets the expected return value of each

read operation in its causal consistency checking algo-

rithm. In other words, it has not fully implemented the

causal consistency checking algorithms in [11].

• Although the official Jepsen testing has tested the

causal consistency of MongoDB under network parti-

tions, it does not cover the scenarios such as node fail-

ures and data movement among shards.

In this work, we propose a more thorough design

of Jepsen testing of the causal consistency protocol of

MongoDB 5○. Specifically, our contributions are as fol-

lows.

• We consider three well-known variants of causal

consistency, following the formal specification given in

[11].

•We generate the most general operation sequences

for clients, without any restrictions on keys.

• We fully implement the “bad patterns” based

causal consistency checking algorithm proposed by

Bouajjani et al. in [11].

• We design more testing scenarios, covering net-

work partitions, node failures, and data movement

among shards.

Our preliminary experimental results confirm the

claim in MongoDB’s documentation that in the pres-

ence of node failures or network partitions, causal con-

sistency is guaranteed only for reads with majority

readConcern (explained shortly in Subsection 2.2) and

writes with majority writeConcern.

This is an extended version of our conference

paper [16] of the same title. In this version, we de-

velop the formal specifications of three causal consis-

tency variants, namely CC, CCv, and CM, and the “bad

patterns” based checking algorithms in TLA+ . We also

verify them using the TLC model checker. The model

checking results confirm, though on test cases of rela-

tively small scales, the correctness of the checking al-

gorithms. We also explain how TLA+ specification can

be further related to Jepsen testing in Subsection 5.5.

The rest of the paper is organized as follows. Sec-

tion 2 provides preliminaries on causal consistency, the

Jepsen testing framework, and TLA+. Section 3 de-

scribes the official Jepsen testing of causal consistency

of MongoDB and introduces our more thorough de-

sign. Section 4 demonstrates our experiments and re-

sults. Section 5 shows the formal specifications of causal

consistency and checking algorithms in TLA+ and the

model checking results. Section 6 discusses related work

and Section 7 concludes the paper.

2 Preliminaries

2.1 Causal Consistency: Informal

Introduction

Causal consistency guarantees that all clients

agree on the relative ordering of causally related

operations [14, 17]. However, operations that are not

causally related may be observed in different orders by

different clients. We informally explain causal consis-

tency in the classic “Lost-Ring” example [18] (see Fig.2).

Alice first posts that she has lost her ring. After a while,

she posts that she has found it. Bob sees Alice’s posts,

and comments “Glad to hear it”. We say that there

Alice

Bob

I’ve lost my ring Found it!

Glad to hear it!

Carol
I’ve lost my ring

I’ve lost my ring Found it!

Glad to hear it!Found it!

Fig.2. “Lost-Ring” example [18] for causal consistency.

5○The project can be found at https://github.com/Tsunaou/Checking-Causal-Consistency-of-MongoDB, Oct. 2021.
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is a read-from dependency from Alice’s second post to

Bob’s get operation, and a session dependency from

Bob’s get operation to his own comment. By transitiv-

ity, Bob’s comment causally depends on Alice’s second

post. Thus, when Carol sees Bob’s comment, she should

also see Alice’s second post. Otherwise, she would be

quite confused, mistakenly thinking that Bob is glad to

hear that Alice has lost her ring.

2.2 Causal Consistency in MongoDB

MongoDB enables causal consistency in client ses-

sions. Moreover, MongoDB’s causal consistency can be

combined with tunable consistency, which allows clients

to select the trade-off between consistency and latency,

at a per operation level [1]. writeConcern specifies the

number of replica set members that must acknowledge

the write before returning to a client. In particular,

w : majority requires a write operation to be acknowl-

edged by a majority of the replica set members be-

fore being returned to the client. readConcern deter-

mines what consistency guarantees data returned to a

client must satisfy. The default value of readConcern

is level : local, which allows to return the local

data in a single replica set member. In contrast,

level : majority guarantees that the returned data

has been written to a majority of the replica set mem-

bers. As claimed in MongoDB’s documentation, in the

presence of node failure or network partitions, causally

consistent sessions can only guarantee causal consis-

tency for reads with majority readConcern and writes

with majority writeConcern. In a good condition,

however, write operations with w1 writeConcern can

also provide causal consistency.

2.3 Causal Consistency: Formal Specification

We review the formal specification of causal con-

sistency with respect to read-write registers, follow-

ing [11].

2.3.1 Replicated Objects

We focus on read/write registers from X, ranged

over by x, y, etc. They support a set of methods

M = {wr, rd} for writing to or reading from a register

(i.e., key), with input or output values from V.

2.3.2 Histories

We model the interactions between clients and a

distributed database maintaining replicated read/write

registers by histories.

Definition 1 (History). A history h = (O, PO, `)

is the poset (partial-ordered set) (O, PO) labeled by M×
V× V, where

• O is a set of operation identifiers, or simply

operations; we use R and W to denote the set of read

and write operations, respectively;

• PO is a union of total orders among operations

called program order; for o1, o2 ∈ O, o1 <PO o2 means

that o1 and o2 were issued by the same client and o1
occurred before o2;

• for an operation o ∈ O, its label `(o) =

(m, arg, rv) ∈ M × V × V indicates that o is an invo-

cation of method m with input argument arg, returning

value rv. We sometimes denote `(o) by m(arg) . rv.

We use wr(x, v) . ⊥ (or simply wr(x, v)) to denote

a write of value v ∈ V to register x ∈ X returning

⊥ /∈ V, and rd(x) . v to denote a read of x returning v.

In addition, for an operation o with `(o) = wr(x, v) or

`(o) = rd(x) . v, we define var(o) = x and val(o) = v.

Let ρ = (O,<, `) be an M × V × V labeled poset

and O′ ⊆ O be a set. ρ{O′} is the labeled poset in

which only the return values of the operations in O′ are

kept. Formally, ρ{O′} is the (M×V)∪ (M×V×V) la-

beled poset (O,<, `′) where for all o ∈ O′, `′(o) = `(o),

and for all o′ ∈ O \ O′, `′(o′) = (m, arg) if `(o) =

(m, arg, rv). We denote ρ{O′} by ρ{o} if O′ = {o}.
Let ρ = (O,<, `) and ρ′ = (O,<′, `′) be two

(M× V) ∪ (M× V× V) labeled posets. ρ′ � ρo means

that ρ′ has less order and label constraints on the set

O. Formally, ρ′ � ρ if <′ ⊆ < and for all o ∈ O,

`′(o) = `(o) or `′(o) = (m, arg) if `(o) = (m, arg, rv).

2.3.3 Sequential Semantics

The consistency of replicated read-write registers

is defined with respect to the sequential semantics of

read-write registers. Intuitively, in any operation se-

quence on read-write registers, an rd operation returns

the value of the latest preceding wr on the same reg-

ister, or the initial value 0 if there are no such prior

writes. Formally, the sequential semantics SRW of read-

write registers is the smallest set of sequences labeled

by M× V× V satisfying

• ε ∈ SRW, where ε is the empty sequence;

• if ρ ∈ SRW, then ρ · wr(x, v) ∈ SRW 6○;

• if ρ ∈ SRW contains no writes on x, then ρ·rd(x).0 ∈
SRW;

• if ρ ∈ SRW and the last write in ρ on register x is

wr(x, v), then ρ · rd(x) . v ∈ SRW.

6○The symbol · means the connection between operations.
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2.3.4 Causal Consistency

Following [11], we consider three well-known vari-

ants of causal consistency, namely CC (Causal Con-

sistency), CCv (Causal Consistency Convergence), and

CM (Causal Memory).

A history is CC if there exists a causal order that

explains the return value of each operation.

Definition 2 (Causal Consistency). A history h =

(O, PO, `) is CC with respect to specification SRW if there

exists a strict partial order co ⊆ O×O called the causal

order such that for each operation o ∈ O, there exists a

sequence ρo ∈ SRW satisfying

AxCausal , PO ⊆ co,
AxCausalValue , (co−1(o), co, `){o} � ρo.

Here co−1(o) is the set of operations that precede o in

causal order. Formally, co−1(o) , {o′ | o′ 6co o}.
CCv ensures eventual convergence via a total arbi-

tration order.

Definition 3 (Causal Convergence). A history

h = (O, PO, `) is CCv with respect to specification SRW
if there exists a strict partial order co ⊆ O × O called

the causal order and a strict total order arb ⊆ O × O
called the arbitration order such that for each operation

o ∈ O, there exists a sequence ρo ∈ SRW satisfying

AxCausal , PO ⊆ co,
AxArb , co ⊆ arb,
AxCausalArb , (co−1(o), arb, `){o} � ρo.

CM requires each client to be consistent with respect

to the returned values it has observed before.

Definition 4 (Causal Memory). A history h =

(O, PO, `) is CM with respect to specification SRW if there

exists a strict partial order co ⊆ O×O called the causal

order such that for each operation o ∈ O, there exists a

sequence ρo ∈ SRW satisfying

AxCausal , PO ⊆ co,
AxCausalSeq , (co−1(o), co, `){PO−1(o)} � ρo.

Here PO−1(o) , {o′ | o′ 6PO o}.

2.4 Causal Consistency Checking

The general decision problem of checking whether a

history over read-write registers is causally consistent

is NP-complete [11]. However, for differentiated histo-

ries in which the values written to the same register are

distinct, it is polynomial time [11]. Differentiated histo-

ries can be achieved by attaching unique timestamps to

writes in implementation. We consider only differenti-

ated histories below.

The polynomial-time checking algorithms proposed

by Bouajjani et al. are based on the notion of “bad

patterns” [11]. Each causal consistency variant can be

precisely characterized by lacking a set of certain bad

patterns. The bad patterns are expressed in terms of

program order PO, read-from relation RF, causal order

CO, conflict relation CF, and happened-before relation

HB on operations.

Definition 5 (Read-From Relation). The read-from

relation RF ⊆ W × R associates a read with the write

from which it obtains the value. Formally,

∀w ∈W, r ∈ R. (w, r) ∈ RF ⇐⇒
var(w) = var(r) ∧ val(w) = val(r).

Definition 6 (Causal Order). The casual order

CO ⊆ O × O is defined as the transitive closure of pro-

gram order and read-from relation. Formally,

CO = (PO ∪ RF)+.

Definition 7 (Conflict Relation). The conflict rela-

tion CF ⊆W×W orders two writes on the same register

according to a third read operation. Formally,

∀w,w′ ∈W. (w,w′) ∈ CF ⇐⇒
∃r′ ∈ R. (w′, r′) ∈ RF ∧ var(w) = var(r′) ∧ (w, r′) ∈ CO.

Example 1. Let us consider the history h of Fig.3;

since wr(x, 2) <RF rd(x) . 2 and rd(x) . 2 <PO rd(x) . 1,

we have wr(x, 2) <CO rd(x).1. In addition, wr(x, 1) <RF

rd(x) . 1. Thus, wr(x, 2) <CF wr(x, 1).

Definition 8 (Happened-Before Relation). For

each operation o ∈ O, the happened-before relation HBo
⊆ O×O of o is the smallest transitive relation satisfying

that CO|CO−1(o) ⊆ HBo and

∀w,w′ ∈W. (w,w′) ∈ HBo ⇐⇒ ∃r′ ∈ R.(
r′ 6PO o∧w′ <RF r

′∧var(w)=var(r′) ∧ (w, r′) ∈ HBo
)
.

Here CO|CO−1(o) is the relation CO restricted on the set

co−1(o).

Example 2. Let us consider the history h of Fig.4.

Since wr(x, 1) <PO wr(y, 1) <RF rd(y).1 and rd(y).1 <PO

rd(x) . 2, we have wr(x, 1) <CO rd(x) . 2. In addition,

for operation rd(x) . 2, CO−1(rd(x) . 2) = CO, there-

fore we have CO ⊆ HBrd(x).2. And since wr(x, 2) <RF

rd(x) . 2 and wr(x, 1) <HBrd(x).2
rd(x) . 2, we have

wr(x, 1) <HBrd(x).2
wr(x, 2). For the transitivity, we can

also get wr(z, 1) <HBrd(x).2
rd(z) . 0.
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Program Order Read From Causal Order Conflict Relation

wr(x↪↽ wr(y↪↽

2

p

p

p

rd(x↽ 1rd(x↽

1rd(y↽ wr(x↪↽

wr(y↪↽

Fig.3. A history h that is not CCv. (The arrows for CO that are implied by transitivity are not shown.)

HBProgram Order Read From Causal Order Conflict Relation 2rd(x↽

p

p

wr(z↪ ↽ wr(x↪ ↽

wr(x↪ ↽

wr(y↪ ↽

2rd(x↽1rd(y↽0rd(z↽

Fig.4. A history h that is not CM. (The arrows for CO that are implied by transitivity are not shown.)

The following theorem characterizes CC , CCv, and

CM in terms of bad patterns defined in Table 1.

Theorem 1 [11]. A history h is CC if and only if h

does not exhibit any bad patterns of CyclicCO, Write-

COInitRead, ThinAirRead or WriteCORead. A history

h is CCv if and only if it is CC and does not exhibit

any bad patterns of CyclicHF. A history h is CM if and

only if it is CC and does not exhibit any bad patterns

of WriteHBInitRead or CyclicHB.

Example 3. Let us consider the history h of Fig.3.

It is not CCv. First, since wr(x, 1) <CO< wr(x, 2) <CO

rd(x) . 1 and wr(x, 1) <RF rd(x) . 1, it exhibits the bad

pattern WriteCORead. In addition, there is a cycle in

CF: wr(x, 1) <CF wr(x, 2) <CF wr(x, 1). Thus, it also

exhibits the bad pattern CyclicCF.

Example 4. Let us consider the history h of Fig.4.

It is not CM. Since we have wr(z, 1) <HBrd(x).2
rd(z) . 0

and rd(z) . 0 <PO rd(x) . 2, it exhibits the bad pattern

WriteHBInitRead.

2.5 Jepsen

Jepsen 7○ is a library for black-box testing of dis-

tributed systems. A typical Jepsen testing of a dis-

tributed database consists of a deployment of the

Table 1. Definitions of Bad Patterns [11]

Bad Pattern Description

CyclicCO PO ∪ RF is cyclic

ThinAirRead ∃r ∈ R. val(r) 6= 0 ∧ (@w ∈W. w <RF r)

WriteCOInitRead ∃r ∈ R,w ∈W. w <CO r ∧ var(w) = var(r) ∧ val(r) = 0

WriteCORead ∃w1, w2 ∈W, r1 ∈ R. var(w1) = var(w2) ∧ w1 <CO w2 <CO r1 ∧ w1 <RF r1

CycliCF CF ∪ CO is cyclic

WriteHBInitRead ∃o ∈ O, r ∈ R,w ∈W. r 6PO o ∧ w <HBo r ∧ var(w) = var(r) ∧ val(r) = 0

CycliHB ∃o ∈ O. HBo is cyclic

7○Jepsen Library. https://github.com/jepsen-io/jepsen, Oct. 2021.
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database and a control node. The control node starts

several worker processes called clients. A generator is

responsible for continuously generating operations and

dispatching them to clients, according to user-defined

rules. Clients interact with the database by issuing

operations. The invocations and responses produced

are recorded in a history. When the test finishes, the

history is checked by a checker against a desired con-

sistency model.

To test the fault-tolerant capability of the database,

special worker processes called nemeses continuously in-

ject faults or rare events (such as data movement among

shards) into the database deployment.

2.6 TLA+

TLA+ is a high-level formal specification language

developed by Lamport [19]. It was designed for modeling

and reasoning about programs and systems, especially

concurrent and distributed ones.

TLA+ is based on TLA, the Temporal Logic of

Actions [20]. With TLA, a system can be modeled as a

state machine which is described by its initial states and

actions. Since we focus on the specification of causal

consistency, we omit the temporal operators in TLA+

here.

TLA+ combines TLA with the first-order logic and

the Zermelo-Fraenkel set theory. Table 2 summarizes

the (non-temporal) operators that we use in [21]. In-

terested readers are referred to the complete version of

Summary of TLA+ 8○.

A specification in TLA+ consists of modules. In

a module, we can declare constants (constants)

and variables (variables), and define operators like

Op(p1, · · · , pn) , exp. We can also import the decla-

rations, definitions, and operators from other modules

M1, . . . ,Mn, by writing extendsM1, · · · ,Mn in M .

TLC is an explicit-state model checker for

TLA+ [22]. It verifies the TLA+ specifications by ex-

ploring the whole state space of finite-state instances

of them. In this paper, we use TLC only to evaluate

constant expressions.

3 Jepsen Testing of Causal Consistency of

MongoDB

In this section we first describe the official Jepsen

testing of causal consistency of MongoDB 3.6.4 and

4.0.0-rc1, from the perspectives of specification, test

case generation, implementation of causal consistency

checking algorithms, and testing scenarios. To over-

come its drawbacks identified in Section 1, we then

design a more thorough Jepsen testing of causal con-

sistency of MongoDB.

3.1 Official Jepsen Testing

The MongoDB deployment under test consists of

two shards, each of which is a replica set of five nodes.

3.1.1 Specification

The Jepsen team claimed that they had tested Mon-

goDB against causal consistency 9○. However, they did

not clearly specify the variant of causal consistency.

Table 2. Summary of TLA+ Operators Used in This Paper

Category Operator Meaning

Set subset S Powerset of S

union S Union of all elements of S

{e : x ∈ S} Set of elements e such that x is in S

{x ∈ S : p} Set of elements x in S satisfying p

Function domain f Domain of function f

f [e] Function application

[x ∈ S 7→ e] Function f such that f [x] = e for x ∈ S

Record e.h h-field of record e

[h1 7→ e1, · · · , hn 7→ en] Record whose hi field is ei

[h1 : S1, · · · , hn : Sn] Set of all records with hi field in Si

Tuple e[i] The i-th component of tuple e

〈e1, · · · , en〉 The n-tuple whose i-th component is ei

Sequence SubSeq(s,m, n) Sequence 〈s[m], s[m + 1], . . . , s[n]〉
Range(s) Set of elements of sequence s

8○Leslie Lamport. Summary of TLA+. http://lamport.azurewebsites.net/tla/summary-standalone.pdf, May 2021.
9○Jepsen Testing of MongoDB 3.6.4. https://jepsen.io/analyses/mongodb-3-6-4, Oct. 2021.
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3.1.2 Test Case Generation

Treating a MongoDB collection as a set of read-

write registers, the generator generates read and write

operations for clients. The dispatch rule ensures that

each client accesses only a single register and different

clients access different registers. Specifically, the ope-

ration sequence of each client consists of five operations

as follows:

(r, w1, r, w2, r),

where r denotes a read of the register that belongs to

the client, w1 a write of value 1 to the register, and w2

a write of value 2 to the register.

3.1.3 Checking Algorithms

Since the test cases are quite restrictive, it is suffi-

cient for the checker to verify whether the three reads

of each client return 0, 1, and 2 in order.

3.1.4 Testing Scenarios

The official Jepsen testing has designed a kind of

nemesis called partition-random-halves to trigger net-

work partitions randomly. Specifically, in the five-node

deployment of MongoDB, the network will be split into

two disconnected parts: one (denoted as P1) consists of

two nodes, one of which is the original primary node,

and the other (denoted as P2) consists of three nodes.

Since three nodes in P2 constitute a majority (of five

nodes), one of them will be elected as a new primary.

Consequently, there would temporarily be two nodes

that consider themselves as the primary of the cluster.

After the network recovers, the writes performed on

the original primary node during network partition will

be rolled back. The Jepsen testing revealed that in

the presence of network partitions, causally consistent

sessions can only guarantee causal consistency for reads

with majority readConcern and writes with majority

writeConcern.

3.2 Our Design of Jepsen Testing

As shown in Table 3, we improve the official Jepsen

testing in the following aspects.

3.2.1 Specification

We test MongoDB against three well-known vari-

ants of casual consistency, namely, CC, CM, and CCv.

Specifically, we adopt the formal specification given

in [11].

3.2.2 Test Case Generation

In our design, the generator generates an arbitrary

differentiated operation sequence for each client using

YCSB [23] 10○. Particularly, we impose no restrictions on

keys as the official Jepsen testing does, only controlling

the range and distribution of generated keys, and the

ratio of read and write operations.

The generated keys follow a uniform distribution.

To ensure that all writes on the same register write

unique values, the generator attaches values 1, 2, . . . to

them in order. We record necessary information about

each operation during generation and execution, includ-

ing its type (i.e., read or write), the value it reads or

writes, the client that issues the operation, and the in-

dex indicating the order in which the operation is gene-

rated.

3.2.3 Checking Algorithms

To check an arbitrary differentiated history against

several variants of causal consistency, we fully im-

plement the “bad patterns” based causal consistency

checking algorithms for CC, CM, and CCv [11].

3.2.4 Testing Scenarios

Besides partition-random-halves in the official

Jepsen testing, we introduce two additional nemeses

called node-failure and data-mover. The node-failure

nemesis randomly selects a database node, suspends it

for a while, and then recovers it. This may trigger

Table 3. Comparison Between the Official Jepsen Testing and Our Design

Perspective Official Jepsen Testing Our Design of Jepsen Testing

Specification Unspecified Three well-known variants: CC, CM, and CCv

Test case generation Restricted on keys and operation sequences General for differentiated histories

Checking algorithms Ad hoc for restricted test cases Full implementation of [11]

Testing scenarios Network partition Network partition, data movement, node failure

10○YCSB. https://github.com/brianfrankcooper/YCSB, Oct. 2021.
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leader election. The data-mover nemesis periodically

moves data among shards. In an execution, partition-

random-halves, node-failure, and data-mover are gene-

rated and scheduled by the generator, according to

user-defined rules.

4 Preliminary Evaluations

We implement the checking algorithms of [11] and

check histories produced by MongoDB 4.2.3 against CC,

CM, and CCv. We use the Jepsen testing framework of

version 0.1.17 11○. Table 4 shows the hardware config-

urations of the control node, the database nodes, and

the checker server.

4.1 Experimental Setup

We adopt the same MongoDB deployment as that

in the official Jepsen testing: it consists of two shards,

each of which is a replica set of five nodes.

In each experiment, we fix 100 registers and 10

clients. The generator generates read or write ope-

rations and appends them into a queue. For each reg-

ister, the ratio between the number of read operations

and that of write operations is 3 : 1. Each client cre-

ates a causally consistent session, extracts operations

from the operation queue, and issues them to MongoDB

servers.

For each experiment, we tune the total number of

operations and the readConcern and writeConcern

levels for operations. To handle possible exceptions

thrown by MongoDB during write operations, we

restart a new causally consistent session in the corre-

sponding client. Moreover, we cover both the scenarios

with and without nemesis. For each history produced

by MongoDB, we check whether it satisfies CC , CM,

and CCv.

4.2 Experimental Results

Table 5 shows the experimental results of checking

causal consistency of MongoDB.

4.2.1 Causal Consistency Checking

The preliminary experimental results confirm the

claim in MongoDB’s documentation that in the pres-

ence of nemesis (such as partition-random-halves,

node-failure, and data-mover), causally consistent ses-

sions guarantee causal consistency only for reads with

majority readConcern and writes with majority

writeConcern. In contrast, in the presence of neme-

sis, the histories with local readConcern and w1

writeConcern may violate any of three causal con-

sistency variants. On the other hand, without neme-

sis, MongoDB can provide all three variants of causal

consistency even with local readConcern and w1

writeConcern.

4.2.2 Performance

Fig. 5 demonstrates the performance of checking

whether histories satisfy causal consistency. According

to [11], it takes O(n3) to check a differentiated history

with n operations against CC or CCv. In contrast, it

takes O(n5) against CM. The experimental results in

Fig.5 exhibit such a substantial performance gap.

4.3 Unexpected ThinAirRead Bad Patterns

We observe some unexpected ThinAirRead bad pat-

terns in our preliminary evaluations, marked ⊗ in Ta-

ble 5. They appear in some histories that are produced

without nemesis and consist of reads with majority

readConcern and writes with majority writeConcern.

Table 6 shows a snippet of such a history. Note that the

write operation wr(85, 5) of No. 1128 incurs a runtime

exception called com.mongodb.MongoWriteException.

Since the causal consistency checking algorithms in [11]

implicitly assume that all write operations are success-

ful, this write operation is considered failed and dis-

carded from the history. However, a later read ope-

ration rd(85) of No. 1266 obtains the value 5 from key

85, indicating that the write operation wr(85, 5) has ac-

tually written its value to the database. This gives rise

to a ThinAirRead bad pattern during checking.

Table 4. Hardware Configurations

Component Configuration

Control node Intelr CoreTM i5-9500 CPU @ 3.00 GHz, 16 GB, Ubuntu 20.04

Database node Intelr Xeonr Platinum 8269CY CPU @ 2.50 GHz, 4 GB, Ubuntu 16.04

Checker server Intelr CoreTM i9-9900X CPU @ 3.50 GHz, 32 GB, Ubuntu 16.04

11○Jepsen Library 0.1.17. https://github.com/jepsen-io/jepsen/tree/0.1.17, Oct. 2021.
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Table 5. Experimental Results of Causal Consistency Checking of MongoDB

Number of Operations With Nemesis Without Nemesis

(majority, majority) (w1, local) (majority, majority) (w1, local)

CC CM CCv CC CM CCv CC CM CCv CC CM CCv

100 3 3 3 3 3 3 3 3 3 3 3 3

200 3 3 3 3 3 3 3 3 3 3 3 3

300 3 3 3 3 3 3 3 3 3 3 3 3

400 3 3 3 3 3 3 3 3 3 3 3 3

500 3 3 3 3 3 3 3 3 3 3 3 3

600 3 3 3 3 3 3 3 3 3 3 3 3

700 3 3 3 7 7 7 3 3 3 3 3 3

800 3 3 3 3 3 3 3 3 3 3 3 3

900 3 3 3 7 7 7 3 3 3 3 3 3

1 000 3 3 3 3 3 3 3 3 3 3 3 3

1 100 3 3 3 7 7 7 3 3 3 3 3 3

1 200 3 3 3 7 7 7 3 3 3 3 3 3

1 300 ⊗ ⊗ ⊗ 3 3 3 3 3 3 3 3 3

1 400 3 3 3 3 3 3 3 3 3 3 3 3

1 500 3 3 3 3 3 3 3 3 3 3 3 3

1 600 3 3 3 7 7 7 3 3 3 3 3 3

1 700 3 3 3 7 7 7 3 3 3 3 3 3

1 800 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

1 900 3 3 3 7 7 7 3 3 3 3 3 3

2 000 3 3 3 3 3 3 3 3 3 3 3 3

2 500 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

3 000 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

3 500 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

4 000 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

4 500 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

5 000 3 3 3 7 7 7 3 3 3 3 3 3

Note: 3: satisfaction; 7: violation; ⊗: unexpected ThinAirRead bad patterns discussed in Subsection 4.3.

We remark that the unexpected ThinAirRead bad

patterns above do not necessarily imply bugs in the

causal consistency protocols of MongoDB. However, to

better explain such unexpected results, it needs to de-

sign checking algorithms for histories which may con-

tain failed write operations.

5 TLA+ Specification of Causal Consistency

and Checking Algorithms

In this section, we formally specify both the spec-

ification of causal consistency and the “bad patterns”

based checking algorithms in [11] in TLA+, and verify

them using the TLC model checker. We explain how

TLA+ specification can be further related to Jepsen

testing in Subsection 5.5. Table 7 summarizes the auxi-

liary operators we define in this paper.

5.1 TLA+ Specification of Causal Consistency

We follow the way how the specification of causal

consistency is developed in Subsection 2.3.

5.1.1 Replicated Objects

In module ReplicatedObjects (Fig.6(a)), we assume

each key is a single-character and take values from nat-

ural numbers for read/write registers. Following [11],

we set the initial value of each key to 0. We assume that

each operation is associated with a unique identifier.

5.1.2 History

We define Session and History in module History

(Fig. 6(b)). A session s ∈ Session is a sequence of

operations issued by the same client, and a history

h ∈ History consists of a set of sessions. The program

order PO(h) of a history h is a union of strict total
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Fig.5. Time of checking whether histories satisfy causal consistency. (a) Time for causal consistency checking with nemesis. (b) Time
for causal consistency checking without nemesis.

Table 6. Snippet of a History Exhibiting an Unexpected ThinAirRead Bad Pattern

No. Operation Exception readConcern

1128 wr(85, 5) MongoWriteException majority

1129 wr(20, 5) MongoWriteException majority

1149 rd(20) . 5 No Exception majority

1266 rd(85) . 5 No Exception majority

1336 rd(20) . 5 No Exception majority

3756 rd(20) . 5 No Exception majority

orders among operations in the same session.

5.1.3 Sequential Semantics

The operator RWRegSemantics(seq , o) in module

RWRegSemantics (Fig. 6(c)) checks whether the ope-

ration o is legal with respect to the sequential semantics

when it is appended to the operation sequence seq .

5.1.4 Causal Consistency

The module Axioms (Fig.7(a)) defines the axioms

used in the specification of variants of causal consis-

tency, which are shown in the module CausalDefinition

(Fig.7(b)).

The axiom AxCausalValue requires that for an ope-

ration o, there exists a linear extension seq of the causal

order co when restricted on the set of operations pre-

ceding o such that RWRegSemantics(seq , o) is satisfied.

The axiom AxCausalArb requires that for an ope-

ration o, the arbitration order arb when restricted on

the set of operations preceding o in causal order co is

legal with respect to the sequential semantics.

The axiom AxCausalSeq requires that for an ope-

ration o, there exists a linear extension seq of the causal

order co when restricted on the set of operations preced-
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Table 7. Summary of Auxiliary Operators Defined in This Paper

Operator Meaning

PreSeq(s, e) The prefix of the sequence s ending with element e (which is unique in s)

Seq2Rel(s) Convert a sequence s into a strict total order relation

SelectSeq(s,Test( )) The subsequence of s consisting of all elements s[i] such that Test(s[i]) is true

R|S Restriction of relation R on set S

AllLinearExtensions(R,S) All possible linear extensions of the partial order R defined on the set S

AnyLinearExtension(R,S) An arbitrary linear extension of the partial order R defined on the set S

Respect(R, T ) Does the relation R respect relation T?

TC (R) Transitive closure of the relation R

POPast(h, o) The set of operations that precede o ∈ Operation in program order in history h ∈ History

(including o)

StrictCausalPast(co, o) The set of operations that precede o ∈ Operation in causal order co

CausalPast(co, o) The set of operations that precede o ∈ Operation in causal order co (including o)

StrictCausalHist(co, o) The restriction of causal order co to the operations in StrictCausalPast(co, o)

CausalHist(co, o) The restriction of causal order co to the operations in CausalPast(co, o)

StrictCausalArb(co, arb, o) The restriction of arbitration arb to the operations in StrictCausalPast(co, o)

CausalArb(co, arb, o) The restriction of arbitration arb to the operations in CausalPast(co, o)

Ops(h) The set of all operations in history h ∈ History

ReadOps(h) The set of all read operations in history h ∈ History

ReadOpsOnKey(h) The set of all read operations on key k ∈ Key in history h ∈ History

WriteOps(h) The set of all write operations in history h ∈ History

WriteOpsOnKey(h, k) The set of all write operations on key k ∈ Key in history h ∈ History

KeyOf (h) The set of keys read or written in h ∈ History

(b)

(a)

(c)

Fig.6. TLA+ modules for replicated read-write registers. (a) TLA+ module ReplicatedObjects. (b) TLA+ module History. (c) TLA+

module RWRegSemantics.
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(b)

(a)

)

Fig.7. TLA+ modules for the definition of variants of causal consistenry. (a) TLA+ module Axioms. (b) TLA+ module CausalDe-
finition.

ing o in co such that for each operation o2 preceding o in

program order, RWRegSemantics(PreSeq(seq , o2), o2)

is satisfied.

5.2 TLA+ Specification of Causal Consistency

Checking Algorithms

The module Relations (Fig.8) defines the relations

including RF, CO, CF, and HB on the set of operations in

histories. The module BadPatterns (Fig.9(a)) then de-

fines all the bad patterns mentioned in Subsection 2.4.

Finally, the module Algorithm (Fig.9(b)) specifies the

“bad patterns” based checking algorithms for CC, CCv,

and CM.

5.3 Optimizations

We observe that model checking histories against

CC , CCv , or CM as defined in Fig. 7(b) are pro-

hibitively inefficient. In this subsection, we propose

several optimizations, taking CCv as an example (see

Fig.10).

5.3.1 CCv1: Rearranging Clauses

In CCv , we first enumerate all possible relations on

ops as candidates for co and arb. In this way, for a

history with n operations, the number of all possible

combinations of co and arb is 22n
2

. To eliminate un-

desired co candidates as early as possible, we move

the two constraints IsStrictPartialOrder(co, ops) and

Respect(co, PO(h)) on co to the front, before enumer-

ating arb (see CCv1 in Fig.10).

5.3.2 CCv2: Computing Linear Extensions of co As
Candidates for arb

The axiom AxArb requires co ⊆ arb. Therefore, we

can directly compute the linear extensions of co as can-

didates for arb, instead of enumerating all possible re-

lations on ops (see CCv2 in Fig.10).
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Fig.8. TLA+ module Relations.

(b)

(a)

Fig.9. TLA+ modules for the “bad patterns” based checking algorithm of variants of causal consistenry. (a) TLA+ module BadPatterns.
(b) TLA+ module Algorithm.
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Fig.10. TLA+ module Optimization.

5.3.3 CCv3: Enumerating Strict Partial Order As
Candidates for co

In CCv2, we still need to enumerate all possible re-

lations on ops as candidates for co, and then eliminate

the ones that are not strict partial orders. In CCv3

(Fig.10), we directly compute all possible strict partial

orders on ops. To this end, we implement the efficient

partial order enumeration algorithm of [24] in Python,

and let TLC call it when necessary 12○.

5.4 Model Checking Results

We verify the TLA+ specification of causal consis-

tency and their “bad patterns” based checking algo-

rithms against five sample histories from [11] using the

TLC model checker. The sample histories are described

in TLA+ in module Samples (Fig.11). It is quite easy

Fig.11. TLA+ module Samples.

12○Technically, we need to wrap it in Java first.
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to manually check them against each causal consistency

variant.

As shown in Table 8, the “bad patterns” based

checking algorithms meet their corresponding specifi-

cations as expected. It also confirms the satisfaction or

violation of the sample histories. This demonstrates,

though on test cases of relatively small scales, the cor-

rectness of the checking algorithms. Note that it takes

much longer to check the history hb which consists

of two sessions and seven operations directly against

the specifications than to use the polynomial “bad pat-

terns” based checking algorithms.

Table 9 shows the time for checking histories ha, hb,

and hd against different versions of CCv proposed in

Subsection 5.3. It demonstrates that each optimization

is quite effective in reducing the checking time. Note

that CCv3 is the only version that is feasible for history

hb with seven operations.

5.5 Relating TLA+ Specification to Jepsen

Testing

As summarized in Fig.12, we have two TLA+ spec-

ifications, one for causal consistency variants and the

other for “bad patterns” based checking algorithms. We

have also a Java implementation of these checking al-

gorithms used in Jepsen testing of MongoDB. Now we

explain how they can interact with each other.

On the one hand, utilizing TLC we are able to au-

tomatically generate various kinds of histories from the

TLA+ specification of causal consistency variants. Es-

pecially, histories satisfying or violating some or all

causal consistency variants can be used as test oracles

for both the specification and our Java implementation

of checking algorithms. They can be used as test oracles

for both the specification and our Java implementation

of the checking algorithms. On the other hand, it is

convenient for MongoDB to generate arbitrarily long

histories in real deployment. By checking them against

both the TLA+ specification and our Java implemen-

tation of the checking algorithms, we can gain more

confidence in our implementation.

6 Related Work

6.1 Jepsen Testing of MongoDB

The Jepsen team has tested MongoDB concerning

its consistency models several times in recent years.

• In 2013, the team tested the election and data

replication protocol of MongoDB 2.4.3 13○. It showed

that acknowledged writes may be lost under network

partitions at all consistency levels.

• In 2015, the team tested the single-document con-

sistency of MongoDB 2.6.7 14○. It showed that “strictly

consistent” reads may see stale versions of documents,

Table 8. Model Checking Results on Sample Histories Defined in Fig.11

History Number of Number of Specification Checking Algorithm

Sessions Operations CC CCv CM CCAlg CCvAlg CMAlg

Result Time Result Time Result Time Result Time Result Time Result Time

(ms) (ms) (ms) (ms) (ms) (ms)

ha 2 4 3 1 161 7 1 155 3 938 3 898 7 802 3 1 140

hb 2 7 3 83 089 3 79 089 7 82 930 3 867 3 990 7 1 886

hc 2 4 3 1 073 7 836 7 940 3 950 7 885 7 1 321

hd 2 6 3 2 326 3 2 318 3 2 296 3 945 3 951 3 1 166

he 3 6 7 2 620 7 3 237 7 2 673 7 921 7 769 7 868

Note: 3: satisfaction; 7: violation.

Table 9. Time of Checking Histories Against Different Versions of CCv

ha (4 Operations) hd (6 Operations) hb (7 Operations)

CCv 2 927 000 ms > 24 h > 24 h

CCv1 2 051 ms 73 020 000 ms > 24 h

CCv2 1 469 ms 85 000 ms > 24 h

CCv3 1 161 ms 2 326 ms 83 000 ms

13○Jepsen: MongoDB. https://aphyr.com/posts/284-call-me-maybe-mongodb, Oct. 2021.
14○Jepsen: MongoDB stale reads. https://aphyr.com/posts/322-jepsen-mongodb-stale-reads, Oct. 2021.
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and worse still they may return garbage data that has

never been written before.

• In 2017, the team tested the v0 and v1 repli-

cation protocols of MongoDB 3.4.0-rc3 15○. It showed

that the v0 replication protocol may lose the majority-

committed documents. The new v1 replication protocol

also contains bugs, allowing data loss in all versions up

to MongoDB 3.2.11 and 3.4.0-rc4.

• In 2018, the team tested the causal consistency

protocol of MongoDB 3.6.4. It showed that in the

presence of node failures or network partitions, causal

consistency is guaranteed only for reads with majority

readConcern and writes with majority writeConcern.

In this paper, we identify several drawbacks of this test-

ing in terms of specification, test case generation, im-

plementation of causal consistency checking algorithms,

and testing scenarios. We also propose a more thorough

design of Jepsen testing of the causal consistency pro-

tocol of MongoDB.

• In 2020, the team tested the transactional con-

sistency models of MongoDB 4.2.6 16○. It showed that

MongoDB failed to preserve snapshot isolation, even

for reads with majority readConcern and writes with

majority writeConcern.

6.2 Consistency Checking Problem

Much work has been devoted to the problem of

checking whether a given history satisfies a desir-

able consistency model. Gibbons and Korach [25]

systematically studied the complexity of the checking

problem against strong consistency models, including

linearizability [26] and sequential consistency [27]. Re-

garding weak consistency models, Wei et al. [28] ad-

dressed the problem of checking PRAM consistency [29]

over histories of read/write registers. They first proved

that for non-differentiated histories, the decision prob-

lem is NP-complete, and then proposed a polynomial-

time checking algorithm for differentiated histories. Re-

cently, Bouajjani et al. addressed the problem of check-

ing causal consistency [11]. They considered three well-

known variants of causal consistency, namely CC, CM,

and CCv. They proved that checking whether a gene-

ral history of arbitrary replicated objects satisfies CC,

CM, or CCv is NP-hard, and that it is NP-complete

for histories of read/write registers. Moreover, they

proposed polynomial-time algorithms for differentiated

histories of read/write registers. In this paper, we fully

implement these efficient checking algorithms and uti-

lize them to test the causal consistency protocol of Mon-

goDB.

15○Jepsen Testing of MongoDB 3.4.0-rc3. https://jepsen.io/analyses/mongodb-3-4-0-rc3, Oct. 2021.
16○Jepsen Testing of MongoDB 4.2.6. https://jepsen.io/analyses/mongodb-4.2.6, Oct. 2021.
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7 Conclusions

We proposed a thorough design of Jepsen testing

of the causal consistency protocol of MongoDB. It

strengthened the official Jepsen testing in 2018 in terms

of specification, test case generation, implementation of

causal consistency checking algorithms, and testing sce-

narios. The experimental results confirmed the claim of

causal consistency in MongoDB’s documentation. We

also developed formal specifications of causal consis-

tency and their checking algorithms in TLA+. The

model checking results demonstrated the correctness of

the checking algorithms and we can gain more confi-

dence in our implementation.

In the future, we will explore the issues discussed

in Subsection 5.5 and more intensive experiments are

needed. We plan to improve the official Jepsen testing

of the transaction protocols of MongoDB 4.2.6. On the

other hand, we are also interested in applying formal

methods to MongoDB’s protocols. Specifically, we will

formally specify these protocols in TLA+, verify them

using the TLC model checker, and develop mechanical

correctness proofs for them using TLAPS.
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DeltaFuzz: Historical Version Information Guided Fuzz Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . Jia-Ming Zhang, Zhan-Qi Cui, Xiang Chen, Huan-Huan Wu, Li-Wei Zheng, and Jian-Bin Liu ( 29 )

Theme: Internetware and Beyond

TOAST: Automated Testing of Object Transformers in Dynamic Software Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ze-Lin Zhao, Di Huang, and Xiao-Xing Ma ( 50 )

Characterizing and Detecting Gas-Inefficient Patterns in Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Que-Ping Kong, Zi-Yan Wang, Yuan Huang, Xiang-Ping Chen, Xiao-Cong Zhou, Zi-Bin Zheng, and Gang Huang ( 67 )

Simulation Might Change Your Results: A Comparison of Context-Aware System Input Validation in Simulated and Physical

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jin-Chi Chen, Yi Qin, Hui-Yan Wang, and Chang Xu ( 83 )

Meaningful Update and Repair of Markov Decision Processes for Self-Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wen-Hua Yang, Min-Xue Pan, Yu Zhou, and Zhi-Qiu Huang ( 106 )

Checking Causal Consistency of MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hong-Rong Ouyang, Heng-Feng Wei, Hai-Xiang Li, An-Qun Pan, and Yu Huang ( 128 )

GridDroid—An Effective and Efficient Approach for Android Repackaging Detection Based on Runtime Graphical User

Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jun Ma, Qing-Wei Sun, Chang Xu, and Xian-Ping Tao ( 147 )

Community Smell Occurrence Prediction on Multi-Granularity by Developer-Oriented Features and Process Metrics . . . . . .

. . . . . . . . . . . . . . . . . Zi-Jie Huang, Zhi-Qing Shao, Gui-Sheng Fan, Hui-Qun Yu, Xing-Guang Yang, and Kang Yang ( 182 )

Regular Paper

MacroTrend: A Write-Efficient Cache Algorithm for NVM-Based Read Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ning Bao, Yun-Peng Chai, Xiao Qin, and Chuan-Wen Wang ( 207 )

Correlated Differential Privacy of Multiparty Data Release in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . Jian-Zhe Zhao, Xing-Wei Wang, Ke-Ming Mao, Chen-Xi Huang, Yu-Kai Su, and Yu-Chen Li ( 231 )

On the Discrete-Time Dynamics of Cross-Coupled Hebbian Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xiao-Wei Feng, Xiang-Yu Kong, Chuan He, and Dong-Hui Xu ( 252 )

A Blockchain-Based Protocol for Malicious Price Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Li-De Xue, Ya-Jun Liu, Wei Yang, Wei-Lin Chen, and Liu-Sheng Huang ( 266 )

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
5O�Å�ÆEâÆ�6

Volume 37 Number 1 2022 (Bimonthly, Started in 1986)

Indexed in: SCIE, Ei, INSPEC, JST, AJ, MR, CA, DBLP

Edited by:

THE EDITORIAL BOARD OF JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

Zhi-Wei Xu, Editor-in-Chief, P.O. Box 2704, Beijing 100190, P.R. China

Managing Editor: Feng-Di Shu E-mail: jcst@ict.ac.cn http://jcst.ict.ac.cn Tel.: 86-10-62610746

Copyright ©Institute of Computing Technology, Chinese Academy of Sciences 2022

Sponsored by: Institute of Computing Technology, CAS & China Computer Federation

Supervised by: Chinese Academy of Sciences

Undertaken by: Institute of Computing Technology, CAS

Published by: Science Press, Beijing, China

Printed by: Beijing Baochang Color Printing Co. Ltd

Distributed by:

China: All Local Post Offices

Other Countries: Springer Nature Customer Service Center GmbH, Tiergartenstr. 15, 69121 Heidelberg, Germany

Available Online: https://link.springer.com/journal/11390

ISÚ�rÒ: CN11-2296/TP ISeu�Ò: 2-578 RMB U160.00


	JCST2022年封面1
	2022-1-8-1662
	1 Introduction
	2 Preliminaries
	2.1 Causal Consistency: Informal[.2mm] Introduction
	2.2 Causal Consistency in MongoDB
	2.3 Causal Consistency: Formal Specification
	2.3.1 Replicated Objects
	2.3.2 Histories
	2.3.3 Sequential Semantics
	2.3.4 Causal Consistency

	2.4 Causal Consistency Checking
	2.5 Jepsen
	2.6 TLA+

	3 Jepsen Testing of Causal Consistency of MongoDB
	3.1 Official Jepsen Testing
	3.1.1 Specification
	3.1.2 Test Case Generation
	3.1.3 Checking Algorithms
	3.1.4 Testing Scenarios

	3.2 Our Design of Jepsen Testing
	3.2.1 Specification
	3.2.2 Test Case Generation
	3.2.3 Checking Algorithms
	3.2.4 Testing Scenarios


	4 Preliminary Evaluations
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Causal Consistency Checking
	4.2.2 Performance

	4.3 Unexpected ThinAirRead Bad Patterns

	5 TLA+ Specification of Causal Consistency and Checking Algorithms
	5.1 TLA+ Specification of Causal Consistency
	5.1.1 Replicated Objects
	5.1.2 History
	5.1.3 Sequential Semantics
	5.1.4 Causal Consistency

	5.2 TLA+ Specification of Causal Consistency Checking Algorithms
	5.3 Optimizations
	5.3.1 CCv1: Rearranging Clauses
	5.3.2 CCv2: Computing Linear Extensions of co As Candidates for arb
	5.3.3 CCv3: Enumerating Strict Partial Order As Candidates for co

	5.4 Model Checking Results
	5.5 Relating TLA+ Specification to Jepsen Testing

	6 Related Work
	6.1 Jepsen Testing of MongoDB
	6.2 Consistency Checking Problem

	7 Conclusions

	2022-1ml

