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Abstract—Although it has been commercially successful to deploy weakly consistent but highly-responsive distributed datastores, the
tension between developing complex applications and obtaining only weak consistency guarantees becomes more and more severe. The
almost strong consistency tradeoff aims at achieving both strong consistency and low latency in the common case. In distributed storage
systems, we investigate the generic notion of almost strong consistency in terms of designing fast read algorithms while guaranteeing
Probabilistic Atomicity with well-Bounded staleness (PAB). This problem has been explored in the case where only one client can write
the data. However, the more general case where multiple clients can write the data has not been studied. In this article, we study the fast
read algorithm for PAB in the multi-writer case. We show the bound of data staleness and the probability of atomicity violation by
decomposing inconsistent reads into the read inversion and the write inversion patterns. We implement the fast read algorithm and
evaluate the consistency-latency tradeoffs based on the instrumentation of Cassandra and the YCSB benchmark framework. The
theoretical analysis and the experimental evaluations show that our fast read algorithm guarantees PAB, even when faced with dynamic

changes in the computing environment.

Index Terms—Probabilistic atomicity, well-bounded staleness, fast read algorithm, quorum-replicated datastore

1 INTRODUCTION

OWADAYS cloud-based distributed datastores are expec-

ted to provide always-available and highly responsive
services for millions of user requests across the world [1], [2],
[3]. To this end, data replication is typically employed. By rep-
licating data into multiple replicas across different machines
or even across data centers, distributed datastores can not
only reduce response time of user requests, but also tolerate
certain degree of software/hardware failures and network
partitions [4], [5]. Since cloud-based datastores must tolerate
network partitions, according to the CAP theorem, once the
datastore replicates data, the tradeoff between data consis-
tency and data access latency comes up [6], [7]. Many real-
world web services, such as Google, Amazon, EBay, etc., aim
to provide an “always-on” experience and overwhelmingly
favor availability and low latency over strong consistency [8].
It is claimed that a slight increase in user-perceived latency
translates into concrete revenue loss [9].

Although itis widely used and commercially successful to
deploy weakly consistent but highly responsive replicated
datastores, the tension between developing complex upper-
layer user applications and obtaining only weak consistency
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guarantees becomes more and more severe [9], [10]. Pro-
vided with only weak consistency guarantees such as even-
tual consistency [11] and session guarantee [12], the
application developers suffer from anomalies in reading
stale data and difficulties in resolving conflicting updates
into common states [13]. The developers expect strong con-
sistency guarantees, which shield them from the underlying
reality of large-scale distributed systems and provide the
illusion of sequential programming on one single copy of
local data [14], [15].

The almost strong consistency tradeoff aims at helping the
application developers out of the dilemma of choosing either
low latency or strong consistency [16]. The tradeoff achieves
the best of both worlds: strong consistency and low latency
in the common case. As for data access latency, the almost
strong consistency tradeoff adopts “fast” data access algo-
rithms, i.e., algorithms requiring one single round-trip of
communication between the clients and the server replicas
[17]. This is obviously optimal in terms of data access latency.
As for data consistency, fast data access protocols cannot
strictly guarantee strong consistency according to the impos-
sibility results [6], [7], [18]. However, the impossibility
results can be circumvented by the concept of “almost
strong” consistency. Here, the abstract term “almost” can be
interpreted in two orthogonal dimensions. On the one hand,
“almost strong” means that the data accessed can be stale,
but the staleness should be well-bounded. On the other
hand, the probability of accessing stale data should be quite
small. Combining both dimensions, clients are able to access
highly consistent data in most circumstances.

We illustrate the basic idea of the almost strong consistency
tradeoff with several examples. In a logistics management
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scenario, data items are naturally organized centering around
the commodities. During the shipment, different divisions of
the commodity transportation system may update the loca-
tion of the commodity. Meanwhile, the inventory tracking
system and the customers all need to frequently query status
of the commodities. Though data consistency is a desirable
property, the users (i.e., all types of entities which need to
query status of the commodity) are more concerned about
how long they have to wait before the queries can be served.
Thus, the users may be willing to trade certain data consis-
tency for low latency, as long as the inconsistency is bounded
and the application can still access highly consistent data
most of the time [16], [19]. In collaborative working scenarios,
cloud storage system can also be used to support a shared
working space. The quick responses to user inputs are of pri-
mary importance in collaborative working scenarios. How-
ever, to enable concurrent but meaningful updates to the
shared working space, data inconsistency should be bounded
and be rare [20], [21].

The almost strong consistency tradeoff can also serve as a
new option for the consistency SLA of cloud storage serv-
ices. For example, Amazon DynamoDB [1] provides either
eventually or strongly consistent reads for users. The almost
strong consistency provides a new option for users who
want to read data with low latency as well as achieve better
user experience than eventual consistency. Microsoft’'s
Azure Cosmos DB [22], [23] provides a consistency option
of bounded staleness, which bounds the staleness of version
and timeliness. The almost strong consistency tradeoff can
enrich the quantification dimension with probability.

In distributed (key-value) storage systems, we investigate
the generic notion of almost strong consistency in terms of
Probabilistic Atomicity with well-Bounded staleness (PAB) '. We
instantiate the notion of strong consistency as atomicity,
since it is the de facto correctness criterion for shared data
[14], [15], [24]. Atomicity is an ideally strong consistency con-
dition, requiring the execution to be equivalent to a legal
sequential execution. However, it has been theoretically
proved that atomicity generally does not admit low-latency
implementations. Guaranteeing low latency in the first place,
PAB circumvents the impossibility result by limiting the
staleness of data and the probability of accessing stale data.

The notion of PAB has been explored in the single-writer
case, where only one single client can write the data while
multiple clients can read the data in our previous work [16].
In the single-writer case, it is shown that, when the clients
read data using only one round-trip of communication with
the server replicas, the clients can miss at most one data
update (i.e., achieve 2-atomicity according to the definition
of [25]) and the probability of reading stale data is quite
small. However, the more general multi-writer case where
multiple clients can write and read the data has not been
studied. Moreover, the fast read algorithm for PAB in the
single-writer case is only evaluated in a mobile data sharing
scenario. The more important scenario of cloud-based repli-
cated datastores has not been studied experimentally.

1. Our use of “atomicity” concerns the correctness of concurrent
objects. Note that it is different from the meaning of the all-or-none
property in transactions in the database community. Linearizability
[15] is equivalent to atomicity when restricted to read /write registers.

In this work, we investigate fast (i.e., one round-trip)
algorithms which can guarantee PAB for multi-writer repli-
cated data objects. We model the client-server interaction as
a quorum system [26], [27]. The latency of data reads and
writes are mainly decided by the number of round-trips of
communications between the clients and the servers. Since
two round-trips of both read and write operations are suffi-
cient to strictly guarantee atomicity [28], we can tune the
read, the write or both operations to one round-trip in order
to reduce the read and write latency. We find, by both theo-
retical analysis and experimental evaluations, that the write
operation must employ two round-trips of communications.
Otherwise, the data inconsistency cannot be bounded from
the perspectives of data staleness and the probability of
accessing stale data (see detailed discussions in Section 3 in
the appendix [29] 2).

According to the discussions above, we focus on the fast
read (i.e., one round-trip read and two round-trip write)
algorithm in this work. In the logistics management sce-
nario, the inventory tracking system may persistently and
periodically query the status of the commodities. As long as
the inconsistent read has bounded staleness and appears
with limited probability, the tracking system can obtain up-
to-date data most of the time, and obtain statistically accu-
rate data. The tracking system is willing to sacrifice certain
amount of consistency for low latency. Also, when multiple
divisions of the transportation system update the data, the
updates are much less frequent than the reads. The write
latency is acceptable, especially when the two round-trip
write is essential to enabling the (much more frequent)
highly consistent read. In the collaborative working sce-
nario, multi-writer shared data objects can be used to indi-
cate the status of shared resources. They can also be used to
support more complex coordination. For example, in the
mutual exclusion algorithm, a weakly consistent multi-
writer register can be used to indicate which one currently
has the priority of entering the zone ahead of other competi-
tors [30], [31]. Low latency in collaborative work scenarios
is of primary importance, while bounded staleness greatly
facilitate meaningful collaboration.

In order to explore whether the fast read algorithm can
guarantee PAB, we first study through theoretical analysis
the data staleness and the probability of inconsistent reads.
As inspired by the theoretical analysis in the single-writer
case, we first express data inconsistency as the atomicity
violation pattern among read and write operations in the
space-time diagram of shared data access. The violation pat-
tern is further decomposed into two sub-patterns namely
the Write Inversion (WI) and the Read Inversion (RI). By the
case-by-case analysis we prove that WI and RI will be
incurred whenever an inconsistent read occurs.

Then we employ the WI and RI patterns to analyze the
bound of data staleness and the probability of reading stale
data. We derive the tight upper bound of data staleness by
intentionally constructing executions with the maximum
number of writes a read can possibly miss. We obtain the

2. The appendix is provided in a separate supplementary file, which
can be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2020.3034328, as required by
the submission procedure. The appendix is also available online [29].
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Fig. 1. System model of read/write register emulation.

upper bound of probability of reading stale data by bound-
ing the probabilities of RI and WI. The theoretical analysis,
together with the corresponding numerical results, show
that the fast read algorithm can guarantee PAB in distrib-
uted storage systems.

We implement a distributed storage system as well as the
fast read algorithm, in order to study whether PAB can be
guaranteed via comprehensive experiments. The implementa-
tions are mainly based on instrumentation over the open-
source datastore Cassandra [32]. We mainly reuse the quorum-
replication framework and the data management modules in
Cassandra. The YCSB benchmarking framework [33], [34] is
used to generate various workloads, and we simulate changes
of various environment factors for comprehensive experimen-
tal evaluations. The evaluation results further demonstrate that
PAB can be guaranteed by fast read algorithms in replicated
datastores, even when faced with dynamic changes in the com-
puting environment. In the experiments, we also study the
effects of practical system optimizations which are beyond
accurate theoretical analysis.

The rest of this paper is organized as follows. Section 2
presents the quorum-based algorithm schema of multi-
writer data objects. Sections 3 and 4 present the theoretical
analysis and the experimental evaluations of the fast read
algorithm respectively. Section 5 reviews the existing work.
In Section 6, we conclude this work and discuss the future
work.

2 QUORUM-BASED ALGORITHM SCHEMA

In this section we first present the system model and the con-
sistency model. Then we propose the quorum-based algo-
rithm schema of distributed shared data objects. The schema
enables us to thoroughly explore possible design options of
fast algorithms potentially guaranteeing probabilistic atom-
icity with well-bounded staleness.

2.1 System Model

The replicated datastore consists of NV servers that communi-
cate with each other through point-to-point message com-
munication. Each server stores one replica of the data item,
and all the replicas collectively emulate the shared register
abstraction for the clients, as shown in Fig. 1. The shared reg-
ister is identified by its key and can be accessed through the
read (value — read(key)) and write (write(key, value)) opera-
tions. Since the data is replicated and can be updated concur-
rently, multiple versions of logically the same data may co-
exist. We assume the asynchronous non-Byzantine model,
where messages can be delayed, lost or delivered out of
order due to process or link failures, but they will not be

corrupted or duplicated. Besides, any number of clients and
any minority of servers (less than %) may crash at any
moment.

2.2 Consistency Model

We define an execution history (or history for short) of the cli-
ents accessing the shared register as a sequence of events
where each event is either the invocation or the response of
a read or write operation. As for shared registers that
appear in the history, we assume that all operations in the
history are applied to the same register. Note that this
assumption is not restrictive. The consistency models con-
sidered in this work (atomicity and k-atomicity defined
below) are local, i.e., for a history with multiple shared
registers, it is atomic/k-atomic if and only if for each regis-
ter accessed, the sub-history is atomic/k-atomic [35]. Given
the locality of the consistency models, we can manage each
data item independently in the replicated datastore.

Each event in the history is tagged with a unique time,
and events appear in the history in increasing order of their
timestamps. For a history o, we can define the partial order
between operations. Let o.s and o.f denote the timestamps
of the invocation and the response events of operation o
respectively. We define 01 <, 02 if 01.f < 09.5s. We define
01 || 02 if neither 0; <, 09 nor 0y <, 0; holds. A history o is
sequential if o begins with an invocation, and each invoca-
tion is immediately followed by its matching response. A
history o is well-formed if for each client p;, o|p; (the subse-
quence of o restricted on p;) is sequential. Given the nota-
tions above, we can define atomicity:

Definition 2.1. A replicated datastore satisfies atomicity if, for
each of its well-formed histories o, there exists a permutation w
of all operations in o such that w is sequential and satisfying
the following two requirements:

e [Real-time requirement] If o) <, 02, then o
appears before oy in 7.

e [Read-from requirement] Each read returns the
value written by the latest preceding write in 7.

For the sake of defining almost strong consistency in the
data staleness dimension, we generalize the definition of
atomicity to k-atomicity [35] by generalizing the read-from
requirement:

Definition 2.2. A replicated datastore satisfies k-atomicity
(k € Z") if, for each of its well-formed histories o, there exists a
permutation w of all the operations in o such that 7 is sequen-
tial and satisfying the following two requirements:

o [Real-time requirement] If o) <, 02, then o
appears before 0y in .

e [Parameterized read-from requirement] Each read
returns the value written by one of the latest k preced-
ing writes in 7.

Given the definitions above, it is obvious to see that
atomicity is equivalent to 1-atomicity. Besides, if a history o
satisfies k-atomicity, then Vk' > k, o satisfies k'-atomicity
(k, K € Z*). In the following sections, when we mention o is
k-atomic, we refer to the minimum £ in terms of k-atomicity
that o satisfies.
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2.3 The Algorithm Schema of Read/Write Register
Emulation
We first present the basic primitives for client-server inter-
action. Based on tuning the round-trips of client-server
interaction, we propose the algorithm schema that involves
possible options of fast algorithms. We analyze the consis-
tency guarantees provided by the algorithms in the schema,
which are essential to the theoretical analysis in Section 3.

2.3.1 The “Diamond” Schema and 4 Concrete

Algorithms

The clients can obtain data updates from server replicas via
the query operation, and can modify the replicas via the
update operation. When a writer client updates the data, a
sequence number paired with the id of the writer client,
forming the version ver = (seq, id), will be attached to the
data. Note that the version values are unique and totally
ordered according to the lexicographical order, as in [28].
Upon receiving a query request from a client, the server
replies to the client with the data. Upon receiving an up-
date request, the server updates its replica if the data from
the client is attached with a larger version and replies to
the client with an ACK. The pseudo-code is presented in
Algorithm 2.3.1. Note that the client-server interaction
described here is abstract. Often it is implemented in such a
way that the client contacts one replica, and this replica con-
tacts other replicas and replies to the client on behalf of all
these replicas, as in Cassandra [3], [32].

Algorithm 1. Client-server interaction

1 > Code for client process p;(0 < i < n —1);
2 function(query(key))
3 wvals —
4  pfor each server s; > pfor: parallel for)
5 send ['query, keyl to s;;
6 v« [key, val, ver] from s;;
7 vals < vals U v;
8  (until a majority of them respond)
9  returnvals;
10 function(update(key, value, version));
11 wals «— G
12 pfor each (server s;)
13 send ['update’, key, value, version] to s;;
14 wait for ([ ACK']s from a majority of them)
15 > Code for server process s;(0 < i < N — 1):
16 upon(receive ['query, keyl from p;)
17 send['query — back', key, val, ver] to p;
18 upon(receive ['update’, key, value, version] from p;)
19 pick [k, val, ver] with k == key;
20  if ver < version then
21 val «— value;
22 ver «— version;
23  send['ACK']top;

The interaction between the clients and servers can be
captured by a quorum system [26], [27]. Viewing a quorum
system from the space dimension, clients need to contact
multiple replicas to perform a query or an update, and the
set of replicas contacted each time is called a query quorum
or an update quorum respectively. All the query and update
quorums form a quorum system if any two quorums have

non-empty intersection. The intersection between quorums
enables data updates to be propagated among the clients
and the server replicas. In this work we adopt the simple
but efficient majority quorum system, where each query or
update quorum contains a majority (more than %) of repli-
cas. Viewing the quorum system from the time dimension,
clients may communicate with the replicas via one or more
round-trips of communications. The number of round-trips
is the most important factor deciding data access latency.

Given the primitives for client-server interaction, the rep-
licas can collectively emulate the write and the read opera-
tions for clients, as shown in Algorithm 2.3.1 and 2.3.1. To
emulate a multi-writer atomic register, both the write and
the read operations require two round-trips of client-server
interaction [28]. As for the write operation, the client first
collects versions from a majority of replicas in the first
round-trip. Then, it constructs a new version by increasing
the sequence number of the largest returned version by 1,
and replacing the id with its own id. In the second round-
trip, the client updates the data together with the new ver-
sion to a majority of replicas. As for the read operation, the
client first collects data from a majority of replicas and select
the data with the largest version. Then, the client employs
an additional round-trip to write-back the data into a major-
ity of replicas.

Algorithm 2. Write algorithms for client p;

1 procedure(TwoRoundWRITE(key, value))
2 replicas <+ querykey;

3  wersion «(maxSeq (replicas)+1, 1);

4  updatekey, value, version;

5 procedure(OneRoundWRITE(key, value))
6  localSeqlkey] < localSeqlkey]+1;

7 wersion < (localSeqlkey],);

8 updatekey, value, version;

Algorithm 3. Read algorithms for client p;

1 procedure(TwoRoundREAD (key))
replicas «— query(key);
version «— maxVer(replicas);
value « valWithMaxVer (replicas, version);
update(key, value, version);
returnvalue;
procedure( OneRoundREAD (key))
8 replicas — query(key);
9  wersion <— maxVer(replicas);
10  walue «— valWithMaxVer (replicas, version);
11  return value;

NGl W

N

The two round-trips of both write and read operations
are able to strictly guarantee atomicity. Bearing Probabilis-
tic Atomicity with Bounded-staleness in mind, we can tune
the write and/or read operations to one single round-trip
in order to reduce latency. Specifically, the one round-trip
write algorithm may omit the first round-trip of querying
versions from replicas and directly update the replicas
with a version constructed locally. The one round-trip
read algorithm may omit the second round-trip of writing-
back data and directly return the queried data that has the
largest version.
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Fig. 2. Diamond schema of shared register emulation algorithms.

By tuning the number of round-trips of the write and/or
the read operations, we can obtain four variants - namely
W2R2, W2R1, W1R2 and W1R1 - of read /write register emu-
lation algorithms. The W2R2 algorithm employs two round-
trips for both read and write operations, and other three
algorithms are named in a similar way. The four algorithms
form a “diamond” lattice as shown in Fig. 2. The lattice in the
figure can be viewed as the Hasse diagram of the four algo-
rithms. The algorithms in the upper layer provide stronger
consistency guarantees than those in the lower layer, which
is discussed in detail in the following Section 2.3.2.

2.3.2 Consistency Guarantees Provided by the Four
Algorithms

In general, the more round-trips employed in the write or
read algorithms, the more consistency guarantees provided.
To define a fine-grained metric for measuring different lev-
els of consistency guarantees, we explore the monotonicity
properties between read and write operations. Basically,
monotonicity means that when the operations have certain
temporal order in the history, they will have certain seman-
tic order concerning the version values of replicas. For any
two operations, each could be either a write or a read. Thus
we have four combinations, and define four types of mono-
tonicity. We study which types of monotonicity that the
four algorithms under the diamond schema can guarantee,
as shown in Table 1.

Write-read monotonicity. All four algorithms have the
write-read monotonicity that w <, r = ver(w) < ver(r).
This is guaranteed by the intersection requirement of quo-
rum systems. When a read starts after a write has finished,
the read will contact at least one replica which has been
modified by the write due to the quorum intersection prop-
erty. Thus, the version obtained by the read is at least as
large as that of the preceding write.

Write-write monotonicity. As for the monotonicity between
writes for multi-writer registers, w <, w' = ver(w) <
ver(w') can be guaranteed only by the two round-trip write
algorithms (i.e, W2R2 and W2R1). First employing one
round-trip to obtain the largest version from a majority of
replicas is key to avoiding assigning a version smaller than
those of the previous writes.

Read-Read Monotonicity. As for the monotonicity between
reads for multi-reader registers, r <, r’ = ver(r) < ver(r’)
can be guaranteed only by the two round-trip read algo-
rithms (i.e., W2R2 and W1R2). The write-back process in the
second round-trip is key to preventing later reads from
returning more stale values.

Read-Write Monotonicity. As for the property r <, w =
ver(r) < wver(w), it can be guaranteed by the W2R2 algorithm

TABLE 1
Four Types of Monotonicity of the Four Algorithms
Properties W2R2 W2R1 WIR2 WIR1
w <, 7= ver(w) < ver(r) v v v v
w <, w = ver(w) < ver(w') v v X X
r <, 1 = ver(r) < wver(r') Vv X Vv X
r <y w = ver(r) < ver(w) v X X X

only. As for the preceding read, the second round-trip writes
back the newly acquired data. For the write, the first round-
trip will first queries the replicas. The quorum intersection
property guarantees that the version of the read is smaller
than that of the write. If either the write or the read employs
only one round-trip, this property cannot be guaranteed.

The detailed proof of all the properties above can be found
in Section 1 in the appendix [29] available in the online sup-
plemental material. In the following Section 3, we study the
consistency guarantees provided by algorithms following
the diamond schema. We mainly discuss the fast read algo-
rithm (i.e., the W2R1 algorithm), which guarantees probabi-
listic atomicity with well-bounded staleness. The W1R2 and
WIRT1 algorithms are briefly discussed since they cannot pro-
vide sufficient consistency guarantees.

3 CONSISTENCY GUARANTEES OF THE FAST READ
ALGORITHM: DATA STALENESS AND VIOLATION
PROBABILITY

In this section, we mainly analyze the consistency guaran-
tees provided by the fast read, i.e,, W2R1, algorithm. The
keys to our analysis are the patterns named read inversion
and write inversion. We first transform all inconsistent reads
into these two patterns. Then we leverage these two pat-
terns to analyze the bound of data staleness and the proba-
bility of atomicity violation. After the analysis of the W2R1
algorithm, we also briefly discuss the other algorithms in
the diamond algorithm schema.

3.1 Atomicity Violation Patterns

In the one round-trip read operation of W2R1, the absence
of the write-back phase before returning the data to the client
may violate the read-read monotonicity and the read-write
monotonicity, as shown in Table 1. According to the viola-
tion of these two monotonicity properties, we can define
two essential patterns of inversions accordingly:

Definition 3.1 (Read Inversion). The Read Inversion after
a read (RI) involves two reads r,r' satisfying (r <o r')A
(ver(r) > wver(r')).

Definition 3.2 (Write Inversion). The Write Inversion after a
read (WI) involves a read r and a write w satisfying (r <o w)A
(ver(r) > ver(w)).

The RI and WI patterns are essential to further analysis of
both the bound of data staleness and the probability of
atomicity violation, which is depicted by the following The-
orem 3.1. When the clients read and write a Multi-Writer
Multi-Reader (MWMR) register using the W2R1 algorithm
and obtain a history o, we have that:
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Fig. 3. Typical patterns of Rl in Case 1 (Sub-fig (a) and (b)), and of WI
(Sub-fig (c)) and RI (Sub-fig (d)) in Case 2.

Theorem 3.1. If o violates atomicity, then there exist some oper-
ations in o that form either RI or WL

If o violates atomicity, then for any permutation 7 of o, we
have a stale read r, the dictating write w of r and the interfer-
ing write ' satisfying: w <, w’ < r. To see why we inevita-
bly have RI or WI, we exhaustively check all possible cases.

According to the definition of atomicity, two types of
relations between operations are of our concern: the tempo-
ral real-time relation and the semantic read-from relation.
We first enumerate all possible cases according to the
semantic relation. Then for each case, we further enumerate
all possible sub-cases according to the temporal relation.

Since w is the dictating write of r, we have that ver(r) =
ver(w). According to the semantic relation between versions
of w and v/, we have two complementing cases:

e Case 1: ver(r) = ver(w) < ver(w').

e Case2:ver(r) = ver(w) > ver(w').

In each case, we then consider the temporal relation
between operations, as shown in Fig. 3.

We discuss the basic rationale of the proofs of Case 1 and
Case 2 in the following Section 3.2.1 and 3.2.2 respectively.
Detailed proof of the theorem, which exhaustively checks
all possible cases and constructs the RI or W1, is provided in
Section 2.1 in the appendix [29] available in the online sup-
plemental material.

3.1.1 Case 1:ver(r) = ver(w) < ver(w')

In Case 1, we further consider the temporal relation
between w and w'. Since in the permutation 7, w <, w', we
have that in o, w <, w' or w||, v/, as shown in Figs. 3a and
3b respectively.

Note that » must be concurrent with «w'. This can be
proved by contradiction. If r <, w/, w' can never be the
interfering write of r. If w' <, r, according to the write-read
monotonicity (see Table 1), r must return the version of w'
(or return an even larger version), contradicting the fact that
ver(r) = ver(w) < ver(w').

When linearly extending o into 7, we inevitably have
w <5 w' < r. For concurrent operations w' and r, in order

to “force” w' to appear before r in 7, we must have a read
operation 1’ dictated by «/, satisfying 7’ <, r. Thus we con-
struct a certificate of RI, i.e., v’ <, r, but ver(r’) > ver(r).

3.1.2 Case 2:ver(r) = ver(w) > ver(w')

Since ver(r) = ver(w) > ver(w'), w must be concurrent with
w'. This can also be proved by contradiction. If w <, w/,
according to the write-write monotonicity (see Table 1), the
version of w' must be larger. If w' <, w, we can never get
w <5 W <5 7 when linearly extending o into 7.

Given that w and v’ are concurrent, we must ”force” w' to
appear after w in . This can be achieved in several different
ways.

In one subcase, we have w' <, r, as well as a read r” dic-
tated by w, satisfying r” <, w', as shown in Fig. 3c. Thus, we
inevitably get w <, r”" <, w' <, r when linearly extending o
into 7. In this subcase, we have a certificate of W1, i.e., r’ <,
W', but ver(r”) > ver(w').

In another subcase, we have a read ' dictated by v/, sat-
isfying w' <, r <, ', as shown in Fig. 3d. Besides, there
exists no dictated read of w' that precedes w, so w' may
appear after w in 7 and be the interfering write of r. Here,
we have a certificate of RI, i.e., r <, 1/, but ver(r) > ver(r').

3.2 Bound of Data Staleness

In this section, we calculate the tight bound of data staleness
when accessing a MWMR register using the W2R1 algo-
rithm. Note that the operations are asynchronous. Denote
the number of writer clients as n,,. Then we have that:

Theorem 3.2. For any history o, there exists a linear extension
of o such that any read in 7 returns the value written by one of
the latest B preceding writes. Here, B = n,, + %nw(nw -1+
1. Moreover, the bound B is tight, i.e., there exists a history o
and a linear extension m of o in which some read returns the
value written by the oldest write in the latest B preceding
writes.

The proof of Theorem 3.2 is based on an adversary argu-
ment: to insert as many interfering writes as possible for an
inconsistent read. The proof also needs to consider the same
two cases as defined in Section 3.1. Specifically, suppose r is
an inconsistent read, and the dictating write of r is w. There
must exist another interfering write v’ such thatw <, w' < r.

According to the versions ver(r) and ver(w'), we consider
two cases. In Case 1 where ver(r) = ver(w) < ver(w'), we
prove that there are at most B; =n, interfering writes
which can inevitably be inserted between 7 and w in n. In
Case 2 where wver(r) =wver(w) > ver(w'), we prove that
there are at most By = %n“,(nw — 1) interfering writes.

Since these two cases can appear at the same time in the
history, we can construct a trace with B; + B, interfering
writes. Counting the dictating write itself, we have that the
read always returns the value written by one of the latest
B = By + By + 1 preceding writes in 7, i.e., the history o
always satisfies B-atomicity (in terms of the k-atomicity
model [35]). During the proof, we explicitly construct the
worst-case trace, which contains the read having B; + B>
interfering writes. This proves that the bound is tight.

In the following Sections 3.2.1 and 3.2.2, we derive the
bound B; and B, respectively. Detailed proof of the bound
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Fig. 4. Maximum number of interfering writes in Case 1.

B can be found in Section 2.2 in the appendix [29] available
in the online supplemental material.

3.2.1 Bound of Staleness in Case 1 (ver(r) < ver(w'))

In this case, the pattern of operations which enables our con-
struction of the trace with the most stale read is the pattern
shown in Fig. 3a. The construction is illustrated in Fig. 4.

From the proof of Case 1 in Proposition 3.1, the interfering
write w’ must be concurrent with r, and «' dictates a read »’
that precedes . Note that the start time of w' must be earlier
than that of r. Otherwise, when 7' precedes r, ’ will not have
the chance to read from w'. Since each writer client can have
at most one write operation that not only starts before the
invocation of r but also stays concurrent with », we could
force each of the n,, writers (including the writer of w itself)
to issue one interfering write w’ separately. Thus we have the
bound B; = n,, in this case, and the bound B; is tight.

3.2.2 Bound of Staleness in Case 2 (ver(r) > ver(w'))

In this case, the pattern of operations which enables our
construction of the worst-case trace is the WI pattern, as
shown in Fig. 3c.

From the WI proof of Case 2 in Proposition 3.1, the inter-
fering write w’ must be concurrent with w, and w' not only
starts after the finish time of a read r” dictated by w, but
also ends before the start time of . Other than the writer of
operation w, we can have at most n,, — 1 writers to generate
interfering writes.

One challenge in the construction is that, some writers
may have more than one interfering write. This is due to,
when " is finished but w is still in process, the version
ver(w) may have not yet been propagated to a majority of
replicas, so there may still exist a majority of replicas whose
maximum version is smaller than ver(w). For adversary
argument, before w is finished, let the maximum version of
a majority of replicas stay as small as possible. Then, other
writer clients may have more than one chance to query a
majority of replicas whose maximum version is smaller
than ver(w) and then write with an incremental version that
is still smaller than ver(w).

However, not all writes versioned smaller than ver(w)
can appear after the finish time of . Specifically, w will not
have ver(w) = (seq,id) unless in the first round-trip it
queries a majority of replicas whose maximum version is
(seq — 1,1), which is written by the client p; by assumption.
Then, after the finish time of 7", p; can only write with the
version larger than (seq — 1,1).

For the ease of illustration, we use a concrete example as
shown in Fig. 5. Assume n, =4, and the writers are
Do, P1,p2 and p3. Let the operation w issued by p3; have the
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Fig. 5. Maximum number of interfering writes in Case 2.

version (100, 3). Client p3 can write with this version only
when it queries a majority of replicas whose maximum ver-
sion is (99,4), where i can be any writer’s identifier. Let p,
have the write operation with the version (99, 2). Similarly,
let p; have the write operation versioned (98,1), so ps can
write with the version (99, 2); let p, have the write operation
versioned (97,0), so p; can write with the version (98, 1).

Assume 7" reads from w versioned (100, 3). Since 7" will
not write back the acquired data into replicas, when r” is
finished there may still exist a majority of replicas whose
maximum version is smaller than (100, 3). Now we focus on
what could happen after that. Assume that when py finishes
the write operation versioned (97,0), none of p;, ps or ps; has
finished the write operation versioned (98,1), (99,2) or
(100, 3) respectively. Thus, py may query a majority of repli-
cas whose maximum version is (97,0), and then issue an
interfering write operation versioned (98, 0) and later (99, 0)
and (100,0). Similarly, assume that when p; finishes the
write operation versioned (98, 1), none of the write opera-
tions versioned larger than (98, 1) has been finished. Then, a
majority of replicas may still hold the maximum version
(98,1), so p; may have the chance to issue an interfering
write operation versioned (99,1) and later (100, 1). As for
po, after it finishes the write versioned (99,2) but no write
operation versioned larger than (99, 2) has been finished, a
majority of replicas may still hold the maximum version
(99,2). Thus p, may have the chance to make an interfering
write operation versioned (100, 2).

Note that all these interfering writes appear not only
after the finish time of ” but also before the start time of 7,
thus they have to be placed after w and before r in 7, inevita-
bly being the interfering writes of r.

Generalize the typical example above, we have that for

all the n,, — 1 interfering writer clients, we can insert:
1
By=14+24...4(ny—2)+ (ny — 1) :§nw(nw— 1),

interfering writes.

3.3 Probability of Atomicity Violation

The probability calculation of atomicity violation is also
based on decomposing the atomicity violation into the RI
and WI patterns. To further calculate the probabilities of RI
and WI, we reduce the calculation in the multi-writer case
to that in the single-writer case.

First note that the occurrence of either RI or W1 is the nec-
essary but not sufficient condition for atomicity violation (as
shown in Fig. 6). Nevertheless, this will not prevent us from
obtaining the upper bound of the violation probability:
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Fig. 6. The relation between atomicity violation and the occurrences of
Rl and WI.
P{Violation} < P{RI v WI}
= P{RI} + P{WI} — P{RI A WI}
< P{RI} + P{WTI}

3.1

To calculate the probabilities of RI and WI, we view RI
and WI as the concurrent occurrences of multiple atomicity
violation patterns in the single-writer case. According to our
previous work [16], atomicity violation in the single-writer
case is equivalent to the pattern named Old-New Inversion
(ONI). We further decompose the ONI into the temporal
Concurrency Pattern (CP) and the semantic Read Write Pat-
tern (RWP). Then we obtain the probability of ONI:

P{ONI} = > "P{CP|R = m}-P{RWP|R =m}

m>1

i wdn m—1
~ T k.np—k m
S((S (5t )

m=1 k=0 (3 2)
. efq)\uvl an(qv Ot(N - q) + 1) .

B(g,N —q+1)

() )

where R’ is a random variable denoting the number of reads
" in Definition 3.1. Please refer to our previous work [16] for
detailed explanations of Equation (2) °.

From the proof of Theorem 3.1, we can decompose RI and
WlIincurred in W2R1 into CP and RWP in a similar way:

Definition 3.3 (The Decomposition of RI). The RI in
W2R1 involves one write w' and two reads r, v, satisfying

o the long-lived-write concurrency pattern(CP):
1) rgqc€ [w;t,w}t] 4
2) vy € [Wy,ral;

e the non-monotonic read-write pattern(RWP):
1) wer(r) = ver(w');
2)  wer(r) < ver(w).

Definition 3.4 (The Decomposition of WI). The WI in
W2R1 involves two writes w, w' and one read v, satisfying

7

o the long-lived-write concurrency pattern(CP):
D w), € [we,wyl,
2) T/jl't € [wy, w);

e the non-monotonic read-write pattern(RWP):
3)  wer(r") = ver(w);
4)  wer(w') < ver(w).

3. The derivation of Equation (2) is provided in Section 4 of our pre-
vious work [16], which is also available online at: https://github.com/
Lingzhi-Ouyang/ Almost-Strong-Consistency-Cassandra/blob/
master/document/pa2ac.pdf.

4. The variables oy and oy refer to the start time and the finish time
of the operation o respectively .

Given the analysis of ONI in the single-writer case, we
can see that ONI is a special case of RI when there exists
only one writer client. By mapping «', w, " in Definition 3.4
to r,w', 7" in Definition 3.3 respectively, WI can also be mod-
eled as ONL

By modeling the occurrences of multiple writers, we can
calculate the probabilities of RI and WI based on that of
ONI We first model the occurrences of multiple writers
with the following queuing model. The workload of each
(reader or writer) client is modeled as an independent
queue characterized by the rate of operations and the ser-
vice time of each operation®. We assume a Poisson process
with parameter A for the scenario of each client issuing a
sequence of read/write operations, and assume an expo-
nential distribution with parameter u for the service time of
each operation. We then have n independent, parallel
M/M/1/1/00/FCFS queues Q; (1 <i<n) (e, a single-
server exponential queuing system, whose capacity is 1
with the “first come first served” discipline) [38]. The inde-
pendence assumption of queues characterizes the feature of
operations from different clients proceeding independently
without waiting for each other. All queues have arrival rate
A and service rate u. For each queue, if there is any opera-
tion in service, no more operations can enter it. Let X'(¢) be
the number of operations in queue i at time ¢. Then X'(¢) is
a continuous-time Markov chain with two states: 0 when
the queue is empty and 1 when some operation is being
served. Its stationary distribution P; 2 P(X'(c0) = s),s €
{0,1} is: Py = ;A5 and P = 25

As for RI, given a read operation r in Q;, let W/ be a ran-
dom variable denoting the number of writes w' satisfying
75t € [wy, w] in RL. The probability that r starts during the
service period of some write w' in Q; equals the probability
that when r arrives at @Q;, it finds @; empty, and finds Q;
full as a bystander (with the constraint that @); is a writer
queue). Since the events in different queues are indepen-
dent, by the PASTA property [38], we have:

P{W,, =a} = (nx“) (ﬁ) ‘ (ﬁ) nu—a+1

Conditional on W/ =z, the probability of RI is no more
than the sum of each w' forming RI with r separately. By
considering all possible choices of w/, we have:

(3.3)

P(RI} = Y P{W/, = o} -P{RL|W,, = 2}
=1 (3.4)

N

< ZP{WZT =z} - 2P{ONI}

As for WI, given a specific write w' in Definition 3.2, let
W,y be a random variable denoting the number of writes w
satisfying w’, € [ws, wp] in WI. Similarly, we have:

Ny — 1 AN/ o N
P — = -
W =2} ( @ ) <u + A) (M + A)

5. The Poisson process, along with exponential distribution, has
been widely used for modeling the arrival phenomena, such as request
arrivals in storage systems [36] and packet arrivals in Internet traffic
[37].

(3.5)
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Fig. 7. The probabilities of atomicity violation.

Then we can bound the probability of WI by:

ny—1

o (36)
< Z P{Wmu’ = x} : .ZT]P’{ONI}

r=1

Substituting Formula (3.2), (3.3), (3.4), (3.5), (3.6) into
(3.1), we obtain a bound of the probability of atomicity vio-
lation in Formula (3.7).

To better illustrate the theoretical analysis results, we pres-
ent the numerical results in Fig. 7. The results are obtained
when setting A = 1 = 10s~! and A\, = \,, = 20s™!. The source
code for calculation of the numerical results can be found in
our open source project on line®. More detailed numerical
results can be found in Section 2.3 in the appendix [29] avail-
able in the online supplemental material. The numerical
results show that the probability of atomicity violation is
quite low (mostly below 0.1% and can be below 10~%) and
will decrease when the number of replicas increases. More-
over, the probability of the concurrency pattern is close to 1.
The probability of the read-write pattern is significantly less
and decreases as the number of replicas increases. The proba-
bility of the read-write pattern ensures that the probability of
the atomicity violation is almost zero. We will conduct more
comprehensive experimental evaluations in Section 4, which
further confirm our theoretical analysis results.

Ny

P{Violation} < Z]P‘{VVZ, =z} - xP{ONI}
r=1

nw—1
+ ) P{W.y =z} - 2P{ONT}

=1

(2n, — DA <& m—1 -
N A+M)M §:<<§:< )Q%—k—1>%r

ksm>
1 ! ’
\BleN—g+1)

(3.7

@'B(g,a(N —q) + 1)

e_q/\u
B(g,N —q+1)

3.4 Discussions

We also analyze the bound of data staleness and the probabil-
ity of atomicity violation for the W1R2 and W1R1 algorithms.
Although for single-writer registers, the W1R2 algorithm

6. https://github.com/Lingzhi-Ouyang/ Almost-Strong-Consis-
tency-Cassandra/tree/master/numerical_results

(also recognized as the ABD algorithm in the literature [39])
guarantees atomicity and the W1R1 algorithm (also called the
PA2AM algorithm in [16]) achieves the almost strong consis-
tency tradeoff, for multi-writer registers we observe that nei-
ther the W1R2 algorithm nor the W1R1 algorithm can provide
sufficient consistency guarantees in terms of the data staleness
and the probability of atomicity violation.

The reason mainly lies in the one round-trip write algo-
rithm. Since the writers try to directly update the replicas
without querying the existing versions of them first, the
updates may often take no effect on the replicas. Specifi-
cally, it occurs frequently that, after a majority of replicas
have already been updated with a larger version, some
writer still tries to update the data with a smaller version.
Moreover, the data written by the no-effect writes will be
“invisible” to any following read. Clients may miss an arbi-
trary number of updates, so the data returned by a read
operation can be arbitrarily stale.

The theoretical analysis and numerical results for the
WIR2 and W1RI1 algorithms are provided in Sections 3.1
and 3.2 in the appendix [29] available in the online supple-
mental material. These theoretical analysis results are also
confirmed by further experimental evaluations, as shown in
Section 3.3 in the appendix available in the online supple-
mental material.

4 EXPERIMENTS AND EVALUATIONS

In this section, we conduct experiments to study whether the
fast read (W2R1) algorithm can guarantee PAB in quorum-
replicated datastores. We first explain important implemen-
tation details and describe the experiment setup. Then we
present the experiment design, followed by discussions on
the experiment results.

4.1 Implementation

Our implementation” is based on the open-source distrib-
uted datastore Cassandra [3], [32], which enables high avail-
ability and low data access latency based on quorum
replication. Our implementation basically reuses the quo-
rum mechanism in Cassandra except that we implement the
versioning of replicas. Cassandra relies on synchronized
clocks among replica servers and uses timestamps follow-
ing the UTC standard, while we use the discrete timestamp
ver = (seq, id). We transfer the 64-bit timestamp of Cassan-
dra into a pair of integers, letting the higher 32-bits store the
sequence number and the lower 32-bits store the process id.
In this way, we can reuse the timestamp maintenance and
comparison schemes of Cassandra.

Cassandra implements a variety of optimizations, which
are beyond accurate modeling in the theoretical analysis.
Thus, we implement knobs which enable users to turn on/off
the optimizations. Tuning off all the optimizations enables us
to validate our theoretical analysis with the experimental
evaluations. Turning on one optimization (and turning off
other optimizations) each time enables us to study in depth

7. Our implementation is available online at: https://github.com/
Lingzhi-Ouyang/ Almost-Strong-Consistency-Cassandra/tree/
master/experiment
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Fig. 8. Architecture of the experiment system.

the effect of this optimization. The optimizations we consider
in the experiments include snitch, digest and read repair [32].

4.2 Experiment Setup

The experiments are conducted on a ThinkStation P710
server with the Intel Xeon(R) E5-2620 8-core 16-thread CPU
(2.10 GHz), equipped with 64 GB DDR4 memory and 7200
RPM SATA disks. The operation system is Ubuntu Linux
18.04. We run up to 9 instances of Cassandra to simulate a
cloud storage system with up to 3 data centers, each consist-
ing of no more than 3 instances, as shown in Fig. 8. Each
Cassandra instance, also denoted a node, acts as a server
replica in our system model.

In order to accurately simulate a multi-data center storage
systems, we derive the distribution of different types of mes-
sage delays in a real geo-replicated environment. Specifi-
cally, we set up virtual machines in three different data
centers (in north / south / east China) in the Alibaba Cloud
[40]. We collect the ping traces for one week and use the sta-
tistics collected to derive the distribution of message delays®.

We implement the client reading and writing algorithms
using the database interface provided by the YCSB frame-
work [33], [34]. We also use YCSB to generate a variety of
workloads for our experiments. In the experiments, each cli-
ent is represented by a YCSB instance using a single worker
thread, guaranteeing that the operations issued by a client are
sequential. A tunable number of YCSB instances representing
multiple clients will execute write and read operations on one
single shared register (key-value pair). This is due to the local-
ity of atomicity and k-atomicity [35]. When each shared regis-
ter provides k-atomicity, the storage system consisting of
multiple registers is guaranteed to provide k-atomicity. Thus
in our experiments, we only study the performance of read-
ing/writing one register, which makes the microbenchmarks
even more adverse to the algorithms. Also note that for one
shared register, the replication factor (number of replicas for
one shared register) typically ranges from 3 to 7. In our experi-
ment, we study the replication factor up to 9.

We conduct our experiments in a simulated environment
for two reasons. First, we tune the different types of environ-
ment factors in order to study whether PAB can be guaran-
teed in a variety of computing environments. Second, the
definition of atomicity relies on the existence of a global
clock, which is difficult to obtain in a geo-replication envi-
ronment. In our experiments, we use the local clock of the
physical machine to accurately approximate the global clock.

8.The ping traces are available online at: https://github.com/
hengxin/aliyun-ping-traces

4.3 Experiment Design

We evaluate the fast read, i.e,, W2R1, algorithm with no
optimizations (denoted as W2R1), as well as the W2R1 algo-
rithm with only one optimization turned on (denoted as
Snitch, Digest and Repair). The W2R2 algorithm is also
implemented mainly for the sake of performance compari-
son. Evaluation results concerning the W1R2 and WIR1
algorithms are presented in Section 3.3 in the appendix [29]
available in the online supplemental material.

The performance metrics are naturally derived from our
concern of the consistency-latency tradeoff: the read latency
for the clients and the data consistency provided. As for
data consistency, we consider both the staleness of accessed
data (measured by the k-atomicity model) and the probabil-
ity of atomicity violation, as indicated in the definition of
PAB. Our k-atomicity-verification algorithm is mainly based
on the idea of the atomicity verification algorithm of Gib-
bons and Korach proposed in [41].

In the experiments, we explore the effects of workload
patterns, replica configurations and network conditions. In
each experiment, only one parameter would be tuned while
others remain the default values. The experiment configura-
tions are listed in Table 2. The default workload pattern is
30 clients issuing 90,000 operations. Among all the opera-
tions, 90% are read operations and others are write opera-
tions. The operation issue rate per client varies from 5 to 10,
which is mainly limited by the network delay we set. The
injected one-way inter-data center delays of network com-
munication are normally distributed with the average of
50ms and the standard deviation of 25ms (denoted as
N(50,25?) ) by default, while the intra-data center delays fol-
low N(5,1%). The delays between clients and servers also
follow N(5,1?). The default replica configuration is one rep-
lica in each of the three data centers, and the default consis-
tency level for both write and read operations are set the
QUORUM option in Cassandra. Each experiment under the
same environment setting is repeated 10 runs.

4.4 Evaluation Results
4.4.1 Decrease in Read Latency

We measure the ratio of the read latency of W2R1 to that of
W2R2. As shown in Table 3, the read latency of W2R1 (with
and without optimizations) is about 60% of that of W2R2 on
average. This is mainly due to the one communication
round-trip saved. The ratio of reduction is not exactly 50%
because the read latency is also affected by other factors,
e.g., I/0 for logging, garbage collections, and thread and
lock contentions [16].

With optimizations, the latency can be further influenced
in different ways. In particular, the snitch optimization may
further reduce the read latency by efficiently routing
requests, while the repair optimization takes a little more
time for replica synchronization. As for the digest optimiza-
tion, the speculative nature and the possible retransmissions
may increase the read latency, but the gain is mainly the
saving of transmission bandwidth. Nevertheless, W2R1
with digest still has lower read latency by almost a quarter
compared to W2R2.

We also find that, the variation of workloads, the number
of replicas and the message delay between server replicas
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TABLE 2
Experiment configurations

Parameter Tuning values Default value
Workload Client number 10 /20 /30 / 40 30

Read ratio 05/06/07/08/0.9 /099 0.9
Replica Replica configuration* 3/111/311/333 111
Network Inter-DC delay/ms N(w,0%),u=10/20/30/40/50,0 =% N(50, 257)

Replica configuration specifies the number of nodes that stores replicas in the Cassandra cluster. For example, 3 means using 3 replicas and
storing all of them in one single DC; 3_1_1 means using 5 replicas but storing 3, 1, 1 replicas in DC1, DC2, DC3, respectively.

TABLE 3
Consistency-Latency Tradeoff Under the Default Setting
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Kmaz P(k=1) P(k = 2) P(k = 3) P(violation) Read latency
W2R2 1 100% 0 0 0 100%
W2R1 3 99.9796% 0.0203% 0.0001% 0.0204% 53%
Snitch 2 99.9896% 0.0104% 0 0.0104% 52.3%
Digest 2 99.9926% 0.0074% 0 0.0074% 76.5%
Repair 2 99.9977% 0.0023% 0 0.0023% 53.9%

may affect the read latency in different ways. However,
these environment factors have little impact on the ratio of
reduced read latency. In general, the W2R1 algorithms
(with and without optimizations) can reduce the average
read latency by 23% to 48% compared to the W2R2 algo-
rithm. More discussions on the effects of the environment
factors are provided in Section 4 in the appendix [29] avail-
able in the online supplemental material.

4.4.2 Staleness and Probability of Data Inconsistency

We investigate data consistency from the perspectives of data
staleness and the probability of atomicity violation. As shown
in Table 3, under the default setting, W2R1 produces up to
3-atomic traces in the worst case, but the probabilities P(k =
2) and P(k = 3) are quite small °. The overall probability of
violation is less than 0.02%, and the optimizations can further
reduce the probability down to approximately 0.002%.

By varying the environment settings, we observe that
data consistency can be impacted in different ways. How-
ever, we find that the probabilities of consistent reads in dif-
ferent environments are all over 99.7% and in most cases
over 99.97%. The experimental results of probability coin-
cide with the numerical results, which also confirm the
validity of our probabilistic model. The data staleness in the
worst-case is k = 4. It is much less than the theoretical upper
bound '°. This is due to, the violation patterns for a larger
data staleness value are much more complex and harder to
be satisfied, i.e., the probability becomes lower and lower as

9. The metric k,,,, is the maximum value of % in terms of k-atomicity
satisfied by the histories obtained from 10 runs of experiments under
the same environment setting. The metric P(k = 1) is the average proba-
bility of reading latest data over 10 runs of experiments under the same
environment setting. Similarly, P(k = 2) is the average probability of a
read returning the second latest data, and so on.

10. The tight upper bound with 30 clients (at most 29 writer clients
and 1 reader client) is B=29+1x 29 x (29 — 1) + 1 = 436. It can be
proved that the probability to trigger the theoretical upper bound is
extremely small.

the staleness increases. Since P(k = 2) is already quite small,
the probability for a larger staleness value under the same
environment setting will be further lower than P(k = 2) and
closer to 0. Different optimizations have certain effects on
the consistency guarantees, but, since the consistency guar-
antees are quite close to 100% atomicity, the effects of opti-
mizations are limited. The experimental results are shown
in Fig. 9.

First we investigate the impact of the client number. By
varying the client number from 10 to 40, the degrees of data
staleness and the probabilities of atomicity violation
incurred by the W2R1 algorithms (with and without optimi-
zations) rise slightly as shown in Fig. 9a. This verifies our
theoretical analysis that the growth of the client number
tends to intensify the concurrency complexity of operations.
However, all of the W2R1 algorithms guarantee atomicity
most of the time, with a probability that more than 99.97%
read requests can obtain up-to-date data.

The occurrence of atomicity violation is also related to the
ratio of read and write operations. Here, we use the read
ratio (the ratio of reads to all operations) as a tunable parame-
ter. By varying the read ratio from 0.50 to 0.99, we derive the
results shown in Fig. 9b. As we can see, for all W2R1 algo-
rithms, higher read ratio within certain range (0.5 - 0.9)
results in higher atomicity violation probabilities. However,
when the read ratio changes from 0.90 up to 0.99, the proba-
bilities of consistent reads reversely increase except W2R1
with snitch. The reason is mainly two-fold. On the one hand,
the increase of reads will raise the possibility of forming spe-
cific concurrency patterns and read-write patterns that
involve stale read(s). On the other hand, the growth of the
read ratio makes writes more rare and sparsely distributed,
so it will be harder for reads to return stale written data. The
only exception, W2R1 with snitch, leads to a monotonically
decreasing consistency guarantee. With the snitch optimiza-
tion, reads always select nearer replicas in priority for speed-
ing up queries. Thus, the increase of the read ratio may cause
more reads to miss the remote updates.
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Fig. 9. Atomicity violation results under various environment parameters.

Replica configurations regarding the number and the dis-
tribution are critical to data consistency maintenance. The
replica factor parameter in Cassandra specifies the number
of replicas in each data center. In this experiment, the rep-
lica factor is varied in 3 (in one data-center), 1 1 1,3 1 1,
and 3_3_3. The consistency guarantees are shown in Fig. 9c.
Overall, more replicas will improve the probabilities of con-
sistent reads. This also confirms our numerical results that
quorum-replicated algorithms implemented with higher
replica numbers are able to guarantee lower probabilities of
atomicity violation. The reason is that, with more replicas
queried, it is more likely to access an replica that is already
updated to the latest version. We also observe that W2R1
with snitch gets its maximum violation rate when the rep-
lica factor is 3_1 1. This is because more read operations
will access the three replicas in the same data center and
may miss the updates on the remote replicas.

As for network conditions, we mainly focus on the inter-
data center network delay. The default one-way inter-data
center delays are normally distributed with the average of
50ms and the standard deviation of 25ms (denoted as
N(50,252) ) ). By varying u from 10ms to 50ms, and o from
5ms to 25ms, we obtain the results shown in Fig. 9d. The
probabilities of atomicity violation rise slightly as the net-
work delays grow higher. This is because larger jitters or
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variances of delays increase the gaps between updates on
different replicas, giving more chances for reads to access
out-of-sync replicas.

4.4.3 Discussions

From the evaluation results we can see that the W2R1 algo-
rithm (including its optimizations) achieves the best of both
worlds. It achieves both PAB and low latency in the common
case. Although the details vary in different workload pat-
terns, replica configurations or network conditions, low read
latency and PAB are achieved in different environments.

Note that the W2R1 algorithm is only a fast read algo-
rithm, and the write operations still require 2 round-trips of
communications. However, both the theoretical analysis
and the experimental evaluations show that the 2 round-
trips of writes are necessary in the multi-writer case when
using the version ver = (seq,id). Fast (1 round-trip) write
algorithms have poor consistency guarantees when multi-
ple clients can write, no matter the read is fast or not.

5 RELATED WORK

Consistency-latency tradeoff is the essential issue in repli-
cated storage system design. Eventually consistent data-
stores which ensure low latency have been widely used and
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commercially successful [1], [2], [3]. The ever growing
demand of new application development also calls for data-
stores providing stronger consistency guarantees. Strong
consistency models, e.g., atomicity or linearizability [15]
and sequential consistency [42], may greatly ease applica-
tion development. Spanner [43] supports linearizable dis-
tributed transactions, partly motivated by the complaints
received from users that Bigtable [44] can be difficult to use
for applications that need strong consistency in the presence
of wide-area replication. Windows Azure Storage (WAS)
[45] provides high availability with strong consistency for
users, especially enterprise customers moving their line of
business applications to the cloud. Clients of WAS always
see the latest value that was written for a data object [46].
ZooKeeper [47] provides sequential consistency for users.
The ZooKeeper Atomic Broadcast protocol [48] guarantees
that updates from a client will be applied in the order that
they were sent. Megastore [49] provides strong consistency
guarantees by using semi-relational data model and syn-
chronous replication.

Even when using weak consistency models, stronger
(though not strong) consistency semantics may also greatly
simplify the resolution of conflicts among replicas and thus
ease the development of upper-layer applications. The Eiger
system provides causal consistency, which is the strongest
consistency guarantee possible when the system can be par-
titioned [9]. It also supports read-only and write-only trans-
actions. The read-only transactions in Eiger normally
complete in one round of local reads, and two rounds in the
worst case. The concept of hybrid consistency is presented
in [10], [50], with which strict strong consistency can be pro-
vided, but only for a selected part of important operations.
For not-important operations, eventual consistency is pro-
vided. All existing works need to find a certain way to cir-
cumvent the impossibility results [6], [18], in order to
achieve both strong consistency and low latency in certain
sense. The almost strong consistency tradeoff mainly tackles
the challenge by relaxing strictly strong consistency to
almost strong consistency, as long as the data inconsistency
perceived by the user is close to zero in the average case. In
scenarios where low latency is important and the data reads
are frequent, the statistically strong consistency guarantees
may be well accepted, as long as the read latency can be sig-
nificantly reduced.

Data consistency can be quantified from different dimen-
sions, such as data versions, timeliness, numerical values
and randomness [51], [52], [53]. The k-atomicity model [54]
bounds the data version staleness for reads. Golab et al.
studied the k-atomicity-verification problem [55], [56],
[57], which is to check whether a given history is k-atomic.
Taubenfeld [58] later re-defined k-atomic registers and ana-
lyzed them from the perspectives of computability and com-
plexity. Time-based consistency conditions [59], [60] require
writes to be globally visible within a period of time. The
semantics of A-atomicity [55] allows reads to obtain data
that are stale by up to A time units. Inspired by A-atomicity,
the I'-atomicity property [61] is arguably more accurate.
TACT [51], a continuous consistency model, mixes the metric
on numerical error with staleness. Both random registers
[62] and PBS [52] allow one to obtain a probability distribu-
tion over the stale data versions that may be returned.

However, they do not require deterministic worst-case guar-
antee on data staleness. Our probabilistic atomicity with
well-bounded staleness, as well as almost strong consis-
tency, integrate deterministically bounded staleness of ver-
sions with randomness. Further, the probability of reading
stale data in our PAB algorithm is quantified in respect of
atomicity instead of regularity (as in [62] and [52]), which is
more challenging and we propose a stochastic queuing
model for the analysis.

The emulation of atomic registers in distributed storage
systems is the theoretical foundation of the fast read algo-
rithm of probabilistic atomicity with well-bounded staleness.
The ABD algorithm [39] uses quorum replication to emulate
the atomic single-writer registers in unreliable, asynchro-
nous networks where only a minority of replicas can fail. The
ABD algorithm completes each read in two round-trips. For
multi-writer registers, atomicity can be guaranteed by two
round-trips of both read and write [28]. It is proved in [17]
that when requiring both read and write to be fast (using
only one round-trip of communication), it is not possible to
guarantee atomicity. This impossibility result motivates us
to propose the notion of “almost strong” consistency.

The consistency-latency tradeoff needs to and has been
studied via comprehensive experiments. Many storage sys-
tems are equipped with tunable quorum mechanisms to
meet a variety of consistency requirements in different sce-
narios [1], [3], [63], [64]. Many practical techniques for trade-
off tuning were developed over the above-mentioned
tunable systems [65], [66], [67]. An adaptable SLA-aware
consistency tuning framework for quorum-based stores [68]
was also implemented and tested on Cassandra. In our pre-
vious work [16], the almost strong consistency tradeoff is
only studied via experiments in a mobile file sharing sce-
nario. In this work, we implement the diamond schema of
four shared register emulation algorithms over Cassandra,
mainly for the sake of exploration of the almost strong con-
sistency tradeoff in the multi-writer register emulation
scenarios.

6 CONCLUSION AND FUTURE WORK

In this work we study the fast read algorithm which guaran-
tees probabilistic atomicity with well-bounded staleness in
replicated datastores where multiple clients can read and
write data replicas. We propose the quorum-based algorithm
schema to study the possible design options of fast read/
write implementations. Then we analyze the consistency
guarantees in the staleness and the probability dimensions.

We implement the algorithms following the diamond
algorithm schema and evaluate the consistency-latency
tradeoffs based on the instrumentation of Cassandra and
the YCSB benchmark framework. The theoretical analysis
and the experimental evaluations show that the fast read
algorithm guarantees probabilistic atomicity with well-
bounded staleness even when faced with various changes
in the computing environment.

In our future work, we need to prove the lower bound
that we inevitably need two round-trips for both reads and
writes to strictly guarantee atomicity. We also plan to study
the almost strong consistency tradeoff in large scale geo-
replicated datastores, where software/hardware failures



828

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

and network partitions are common. More consistency met-
rics for data inconsistency measurement are also needed, in
order to interpret the abstract notion of “almost strong” con-
sistency in a variety of realistic application scenarios.
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