Brief Announcement: Byz-GentleRain: An
Efficient Byzantine-tolerant Causal Consistency
Protocol

Kaile Huang!, Hengfeng Wei'*, Yu Huang!, Haixiang Li%, and Anqun Pan?

! State Key Laboratory for Novel Software Technology, Nanjing University, China
MG1933024@smail.nju.edu.cn, {hfwei, yuhuang}@nju.edu.cn
2 Tencent Inc., China
{blueseali, aaronpan}@tencent.com

Abstract. Causal consistency is a widely used weak consistency model
and there are plenty of research prototypes and industrial deployments of
causally consistent distributed systems. However, none of them consider
Byzantine faults, except Byz-RCM proposed by Tseng et al. Byz-RCM
achieves causal consistency in the client-server model with 3 f + 1 servers
where up to f servers may suffer Byzantine faults, but assumes that
clients are non-Byzantine. In this work, we present Byz-Gentlerain, the
first causal consistency protocol which tolerates up to f Byzantine servers
among 3f + 1 servers in each partition and any number of Byzantine
clients. Byz-GentleRain is inspired by the stabilization mechanism of
GentleRain for causal consistency. To prevent causal violations due to
Byzantine faults, Byz-GentleRain relies on PBFT to reach agreement
on a sequence of global stable times and updates among servers, and
only updates with timestamps less than or equal to such common global
stable times are visible to clients. Byz-GentleRain achieves Byz-CC, the
causal consistency variant in the presence of Byzantine faults. All reads
and updates complete in one round-trip. The preliminary experiments
show that Byz-GentleRain is efficient on typical workloads.

Keywords: Causal consistency - Byzantine faults - PBFT - GentleRain

1 Introduction

Causal consistency [1,/2,/6] is a widely used weak consistency model that allows
high availability despite network partitions. It guarantees that an update does
not become wvisible to clients until all its causality are visible. There are plenty of
research prototypes and industrial deployments of causally consistent distributed
systems (e.g., COPS [5], GentleRain [4], MongoDB [8], and Byz-RCM [7]). Gen-
tleRain in a key-value store uses a stabilization mechanism to make updates

* Corresponding Author. He is also with Software Institute, Nanjing University, China.
This work was partially supported by the CCF-Tencent Open Fund (CCF-Tencent
RAGR20200124) and the National Natural Science Foundation of China (61772258).
A full version of this work is available at https://arxiv.org/abs/2109.14189.

https://arxiv.org/abs/2109.14189

2 K. Huang et al.

gst

Replica 1 —{ k=1 k=2 k-3 o T T E—
gst
Replica2—{ k=1 —Jk2 |—x=3 ——I'-k_«_s_‘L
gst
gReplica3—| kel '—11“-2 |—|k<_3 |__|"£:_5‘_|.
| st

k<4

Replicad—{ k1 —k2 |—{x=3] I

Fig. 1. Why the servers need to synchronize their global stable times.

visible while respecting causal consistency. It timestamps all updates with the
physical clock value of the server where they originate. Each server s periodi-
cally computes a global stable time gst, which is a lower bound on the physical
clocks of all servers. This ensures that no updates with timestamps < gst will
be generated. Thus, it is safe to make the updates with timestamps < gst at s
visible to clients. A get operation on key k& with dependency time dt issued to s
will wait until gst > dt and then obtain the latest version of k before gst.

However, none of these causal consistency protocols/systems consider Byzan-
tine faults, except Byz-RCM (Byzantine Resilient Causal Memory) in [7]. Byz-
RCM achieves causal consistency in the client-server model with 3f + 1 servers
where up to f servers may suffer Byzantine faults, and any number of clients may
crash. However, Byz-RCM did not tolerate Byzantine clients, and thus it could
rely on clients’ requests to identify bogus requests from Byzantine servers [7].

In this work, we present Byz-GentleRain, the first Byzantine-tolerant causal
consistency protocol which tolerates up to f Byzantine servers among 3f + 1
servers in each partition and any number of Byzantine clients. It uses PBFT 3]
to reach agreement among servers on a total order of client requests. The major
challenge Byz-GentleRain faces is to ensure that the agreement is consistent
with the causal order. To this end, Byz-GentleRain should prevent causality
violations caused by Byzantine clients or servers: Byzantine clients may violate
the session order by fooling some servers that a request happened before another
that was issued earlier. Byzantine servers may forge causal dependencies by
attaching arbitrary metadata for causality tracking to the forward messages.
To migrate the potential damages of Byzantine servers, we let clients assign
totally ordered timestamps to updates in Byz-GentleRain. Utilizing the digital
signatures mechanism, Byzantine servers cannot forge causal dependencies.

To preserve causality, Byz-GentleRain uses the stabilization mechanism of
GentleRain. As explained above, the timestamps in Byz-GentleRain are gener-
ated by clients. However, it is unrealistic to compute a lower bound on physical
clock values of an arbitrary number of clients. Therefore, each server s in Byz-
GentleRain maintains and periodically computes a global stable time gst which
is a lower bound on physical clock values of the clients it is aware of. Simply re-
fusing any updates with timestamps < gst on each server may lead to causality

Byz-GentleRain 3

violations. Consider a system of four servers which are replicas all maintain-
ing a single key k, as shown in Figure [I] Due to asynchrony, these four servers
may have different values of gst. Without loss of generality, we assume that
gst; < gst, = gsty < gst,, as indicated by vertical lines. Now suppose that a
new update u : k < 5 with timestamp between gst; and gst, arrives, and we
want to install it on > 3 servers, using quorum mechanism. In this scenario, if
each server refuses any updates with timestamps smaller than or equal to its gst,
the update u can only be accepted by the first 3 servers, indicated by dashed
boxes. Suppose that server 3 is a Byzantine server, which may expose or hide
the update u as it will. Consequently, later read operations which read from > 3
servers may or may not see this update u. That is, the Byzantine server 3 may
cause causality violations.

To cope with this problem, we synchronize the global stable times of servers.
When a server periodically computes its gst, it checks whether no larger global
stable time has been or is being synchronized. If so, the server will try to synchro-
nize its gst among all servers, by running PBFT independently in each partition.
For each partition, the PBFT leader is also responsible for collecting updates
with timestamps < gst from 2 f+1 servers, and synchronizing them on all servers.
Once successfully synchronized, a global stable time becomes a common global
stable time, denoted cgst, and in each partition the updates with timestamps
< cgst on all correct servers are the same. Therefore, each server can safely
refuse any updates with timestamps smaller than or equal to its cgst.

Still, the classic PBFT is insufficient, since a Byzantine leader of each par-
tition may propose an arbitrary set of updates. To avoid this, the leader will
also include the sets of updates it collects from 2f + 1 servers in its PROPOSE
message. A server will reject the PROPOSE message if it finds the contents of this
message have been manipulated by checking hash and signatures.

2 Byzantine Causal Consistency

Byz-GentleRain achieves Byzantine Causal Consistency (Byz-CC) defined as
follows. For two events e and f, we say that e happens before f, denoted e ~ f,
if and only if one of the following three rules holds:

— Session-order. Events e and f are two operation requests issued by the same
correct client, and e is issued before f.

— Read-from relation. Event e is a PUT request issued by some client and f is
a GET request issued by a correct client, and f reads the value updated by
e. Since a GET of Byzantine clients may return an arbitrary value, we do not
require read-from relation induced by it.

— Transitivity. There is another operation request g such that e ~ g and g ~~ f.

If e ~~ f, we also say that f causally depends on e and e is a causal dependency
of f. A version vv of a key k causally depends on version vv’ of key k', if the
update of vv causally depends on that of vv’. A key-value store satisfies Byz-CC
if, when a certain version of a key is visible to a client, then so are all of its
causal dependencies.

4 K. Huang et al.

3 The Byz-GentleRain Protocol

We consider a distributed multi-version key-value store. It runs at D data centers,
each of which has a full copy of a data. In each data center, the full data is shared
in to P partitions. We denote by 7% the replica of partition p in data center d,
and store!) the store at replica 7. Each partition consists of at least 3 f+1 replicas
and at most f of them may be Byzantine. Any clients may be Byzantine.

When a client issues an update, it assigns to the update a timestamp which
is its current clock value. All updates are totally ordered according to their
timestamps, with client identifiers used for tie-breaking. We distinguish between
the updates that have been received by a server and those that have been made
visible to clients. Byz-GentleRain guarantees that an update can be made visible
to clients only if so are all its causal dependencies.

In Byz-GentleRain, both clients and servers maintain a common global stable
time cgst. We denote the cgst at client ¢ by cgst, and that at replica ¥ by cgst?.
Replicas get their gst synchronized using PBFT, to obtain a cgst. All the updates
with timestamps < cgst issued to each individual partition will be synchronized
as well. Byz-GentleRain maintains the following key invariants about cgst:

Inv (I): Consider cgst, at any time o. All updates issued by correct client ¢

after time o have a timestamp > cgst,.

INv (II): Consider cgst) at any time 0. No updates with timestamps < cgst?,
will be successfully executed at > f correct replicas of partition p
after time o.

INv (II): Consider a cgst value. For any two correct replicas rf and rf (where
i # d) of partition p, if cgst, > cgst and cgst! > cgst, then the
updates with timestamps < cgst in store®, and store? are the same.

Each operation returns only when it receives at least 2f + 1 replies from the
replicas of the partition it accesses. Byz-GentleRain enforces the following rules
for reads and updates:

RULE (I): For a correct replica rf, any updates with timestamps > cgst’, in
store!) are invisible to any clients (via GET operations).
RULE (II): Any correct replica r§ will reject any updates with timestamps
< cgsth.
RULE (III): For a read operation with timestamp ts issued by client ¢, any cor-
rect replica 1} that receives this operation must wait until cgst?, >
ts before it returns a value to client c.

4 Evaluation

We implement both Byz-GentleRain and Byz-RCM in Java. The key-value stores
hold 300 keys in main memory, with each key of size 8 bytes and each value of
size 64 bytes. We run all experiments on 4 Aliyun E| instances running Ubuntu

3 Alibaba Cloud: https://www.alibabacloud.com/.

https://www.alibabacloud.com/

Byz-GentleRain 5

16.04. Each instance is configured as a data center, with 1 virtual CPU core, 300
MB memory, and 1G SSD storage. All keys are shared into 3 partitions within
each data center, according to their hash values.

We first explore the system throughput and the latency of GET and PUT op-
erations of both Byz-GentleRain and Byz-RCM in failure-free scenarios. First,
Byz-GentleRain is quite efficient on typical workloads, especially for read-heavy
workloads (2,000 ~ 3,000 operations per second). Second, Byz-RCM performs
better than Byz-GentleRain, especially with low GET : PUT ratios. This is be-
cause Byz-RCM assumes Byzantine fault-free clients and is signature-free. In
contrast, Byz-GentleRain requires clients sign each PUT request. Third, the per-
formance of Byz-GentleRain is closely comparable to that of Byz-RCM, if digital
signatures are omitted deliberately from Byz-GentleRain.

We then evaluate the impacts of various Byzantine failures on the system
throughput of Byz-GentleRain. Specifically, we consider Byzantine clients that
may send GET or PUT requests with incorrect timestamps, and Byzantine replicas
that may broadcast different global stable time cgst to replicas in different parti-
tions. We find that these Byzantine failures have little impact on throughput. In
contrast, frequently sending arbitrary messages in PBFT does hurt throughput.
This is probably due to the signatures carried by these messages.

References

1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: Def-
initions, implementation, and programming. Distributed Computing 9(1), 3749
(1995). https://doi.org/10.1007/BF01784241

2. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: Spec-
ification, verification, optimality. In: Proceedings of the 41st ACM Symposium on
Principles of Programming Languages. pp. 271-284. POPL ’14 (2014)

3. Castro, M.: Practical Byzantine fault tolerance. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA (2000)

4. Du, J., Torgulescu, C., Roy, A., Zwaenepoel, W.: Gentlerain: Cheap and scalable
causal consistency with physical clocks. In: Proceedings of the ACM Symposium on
Cloud Computing. p. 1-13. SoCC ’14 (2014)

5. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: Scalable causal consistency for wide-area storage with cops. In: Proceedings
of the 23rd ACM Symposium on Operating Systems Principles. pp. 401-416. SOSP
’11 (2011). https://doi.org/10.1145,/2043556.2043593

6. Perrin, M., Mostefaoui, A., Jard, C.: Causal consistency: Beyond memory. In: Pro-
ceedings of the 21st ACM Symposium on Principles and Practice of Parallel Pro-
gramming. PPoPP 16 (2016). https://doi.org/10.1145/2851141.2851170

7. Tseng, L., Wang, Z., Zhao, Y., Pan, H.: Distributed causal memory in the presence of
byzantine servers. In: 18th IEEE International Symposium on Network Computing
and Applications, NCA 2019. pp. 1-8 (2019)

8. Tyulenev, M., Schwerin, A., Kamsky, A., Tan, R., Cabral, A., Mulrow, J.: Imple-
mentation of cluster-wide logical clock and causal consistency in mongodb. In: Pro-
ceedings of the 2019 International Conference on Management of Data. pp. 636-650.
SIGMOD ’19 (2019). https://doi.org/10.1145/3299869.3314049

https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/3299869.3314049

	Brief Announcement: Byz-GentleRain: An Efficient Byzantine-tolerant Causal Consistency Protocol

