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Abstract PolarFS is a distributed file system developed by Alibaba with ultra-low latency
and high availability. It implements a variant of the Raft consensus protocol, called ParallelRaft.
ParallelRaft breaks Raft’s strict serialization restrictions in the commitment and execution of
log entries and enables state machines to commit and execute log entries in an out-of-order
way. However, ParallelRaft is not open-sourced. It has only a brief description, lacking formal
specification. Moreover, the correctness of ParallelRaft has not been manually proven or formally
checked. The purpose of the study is to provide a precise formal specification for ParallelRaft
and to prove its correctness. Specifically, the following main contributions are accomplished.
First, to clarify the relationship between Raft and ParallelRaft, ParallelRaft-SE (Sequential
Execution) is proposed, which allows out-of-order commitment but prohibits out-of-order
executions. Also, a refinement mapping from ParallelRaft-SE to Multi-Paxos is established.
Second, it is discovered that ParallelRaft, according to its brief description in the literature,
neglects the so-called “ghost log entries” phenomenon, which may violate the consistency among
state machines. Therefore, based on ParallelRaft-SE, ParallelRaft-CE (Concurrent Execution)
is proposed. ParallelRaft-CE avoids the “ghost log entries” phenomenon and ensures the
consistency among state machines when executing concurrently by limiting parallelism in the
commitment of log entries. The correctness of ParallelRaft-CE is proved manually. Finally,
the formal specifications of ParallelRaft-SE and ParallelRaft-CE are provided by TLA+ (TLA
stands for temporal logic of actions), and the refinement mapping from ParallelRaft-SE to Multi-
Paxos and the correctness of ParallelRaft-CE are verified using the TLC model checker when
the number of participants of the protocols is small.
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Distributed consensus is the core of distributed computing, which requires multiple
participants to agree on a value or a set of values (also called a sequence)[1, 2]. Distributed systems
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generally use consensus protocols to provide the required strong consistency, including open-
sourced Ceph[3], Spanner from Google[4], MySQL from Oracle[5], PaxosStore from Tencent[6],
and PolarDB from Alibaba[7].

Multi-Paxos (Paxos)[8, 9] and Raft[10] are two classical protocols to solve the distributed
consensus problem. Both based on the replicated state machine[11] model, they guarantee
state consistency across multiple replica nodes through voting and log replication. Each user
command goes through commitment and execution phases. If a command receives a vote from
a majority of servers, it is called to be committed. Only the committed commands can be
executed. For multiple commands, both phases can be performed in a sequential or out-of-
order way. In the out-of-order way, the command corresponding to a large log number may
be committed or executed before the command corresponding to a small log number. For
example, Raft requires sequential commitment and sequential executions, while Multi-Paxos
allows out-of-order commitment but prohibits out-of-order executions.

PolarDB uses the distributed file system PolarFS[7]. To improve the system performance,
PolarFS implements the ParallelRaft consensus protocol based on Raft that allows out-of-
order commitment and out-of-order executions. However, the precise formal specification of
ParallelRaft is not provided. Particularly, there is no complete description of its out-of-order
execution mechanism. Moreover, ParallelRaft has not yet been proved mathematically or verified
formally. This paper aims to provide a precise formal specification for ParallelRaft and prove
its correctness with refinement relationships[12] and mathematical arguments. Specifically, the
main contributions of this paper are as follows.

• To clarify the relationship between ParallelRaft and Raft, we propose the ParallelRaft-SE
(Sequential Execution) protocol based on Raft, which allows out-of-order commitment
but prohibits out-of-order executions. ParallelRaft can be viewed as an out-of-order
execution version of ParallelRaft-SE. We establish the refinement relationship between
ParallelRaft-SE and Multi-Paxos (showing ParallelRaft-SE is an implementation of Multi-
Paxos), thus verifying the correctness of ParallelRaft-SE.

• Besides, we find that the out-of-order execution mechanism of ParallelRaft which is
described in literature may ignore the “ghost log entries” phenomenon that can break
state consistency. Studies show that in the case of a sequential execution (e.g., Raft or
Multi-Paxos), “ghost log entries” phenomenon does not break state consistency among
replicas. On the contrary, we will prove that it may cause state inconsistency among
replicas during an out-of-order execution. Further, it is argued that the solutions to Raft
and Multi-Paxos do not solve the consistency problem of state machines in the mode of
out-of-order execution.

• The ParallelRaft-CE (Concurrent Execution) protocol is proposed on the basis of
ParallelRaft-SE, which supports out-of-order executions. By limiting the parallelism
of ParallelRaft-SE in out-of-order commitment, ParallelRaft-CE avoids the “ghost log
entries” phenomenon. We prove the correctness of ParallelRaft-CE.

• At last, we provide the formal specification of ParallelRaft-SE and ParallelRaft-CE in
the TLA+[13–15] language. For the case where the number of protocol participants is
small, we use the model checker TLC[16] to verify the refinement relationship between
ParallelRaft-SE and Multi-Paxos and the correctness of ParallelRaft-CE.

Section 1 introduces propaedeutics, including the formal specification language TLA+,
the distributed consensus problem, and the Multi-Paxos and Raft consensus protocols.
Section 2 gives a description of the ParallelRaft-SE protocol and establishes the refinement
relationship between ParallelRaft-SE and Multi-Paxos. Section 3 analyzes the impact of the
“ghost log entries” phenomenon on state consistency in the mode of out-of-order executions
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and points out the shortcomings of existing solutions. Section 4 introduces the ParallelRaft-CE
protocol, which allows out-of-order executions and avoids the “ghost log entries” phenomenon.
Section 5 briefly proves the correctness of ParallelRaft-CE. Section 6 verifies the refinement
relationship between ParallelRaft-SE and Multi-Paxos and the correctness of ParallelRaft-CE by
the model checker TLC. Section 7 discusses related work. Section 8 summarizes the paper and
discusses possible work in the future. The complete TLA+ specification and model checking
results are available in the GitHub repository[17].

1 Propaedeutics
1.1 Introduction of TLA+

TLA+, developed by Leslie Lamport, is a formal specification language[13] based on the
temporal logic of actions[15]. It is particularly suitable for describing concurrent systems and
distributed protocols.

A TLA+ specification contains a set of variables, an initial state, and a set of actions. It is
usually expressed as Spec = Init ∧ [Next]vars, where vars is the set of all variables. A state is
an assignment of all variables. The predicate Init defines the initial state of the system. Next
indicates the disjunctive form of all actions and defines the transition relationships between
states. [Next]vars is true when and only when Next is true (an action is true, namely that an action
is executed) or the values of all variables remain unchanged. A behavior is a sequence of states.
TLA+ uses a variable without an apostrophe to represent its value in the current state and a
variable with an apostrophe to indicate the value in the new state. In this way, an action can be
described by a formula that contains variables with and without an apostrophe. For example,
the action x′ = x+ 1 indicates that the value of the variable x in the new state is increased by
1 compared with that in the old state.

TLA+ supports first-order predicate logic and Zermelo-Fraenkel (ZF) set theory, which
can express many types of data[18, 19]. Table 1 summarizes logics and set operators used in this
paper. Reference [20] provides the complete list of TLA+ operators.

Table 1 A summary of the TLA+ operators used in this paper
Style Operator Meaning
Logic CHOOSE x ∈ S : P Select the element x satisfying the condition p in the

set S (generally used in the case where x is the only
one satisfying the condition)

Set SUBSET S Power set of S

Function

f(e) Apply the function f on the parameter e
[x ∈ S 7→ e] For given x ∈ S, the function f(x) = e

[f EXCEPT ![e1] = e2] f̄ : f̄ [e] =

{
e2 if e = e1

f [e] otherwise

Record

e.h Record the domain h of e
[h1 7→ e1 · · ·hn 7→ en] Record whose domain hi is ei
[h1 : S1 · · ·hn : Sn] Set composed of records satisfying that domain hi

belongs to Si

[r EXCEPT ![h] = e] Record r̄ equals to r except ē.h = e
[r EXCEPT ![h] = e], e

contains symbol @
@ in e stands for r.h

Tuple e[i] The i-th component of the tuple e

Action
Operator

e′ Value of e in the new state
UNCHANGED e e remains unchanged: e′ = e

[A]e Action A holds or e remains unchanged
Sequence
Operator

□F Always holds (□ means “always”)
�F Holds eventually (� means “eventually”)
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TLA+ allows mutual reference in the form of modules. Each module can declare constants
and variables, define operators, or propose theorems[18, 19]. A module can introduce declarations,
definitions, and theorems from other modules by an extend command. The introduced modules
can be instantiated. For example, the module M introduces module M1.

IM1B INSTANCE M1 WITH p1 ← e1, · · · , pn ← en,

where pi contains all the constants and variables in module M1, and ei is a legitimate
expression defined by the constants and variables in M . This statement replaces pi in M1

with corresponding ei. We can access the expression F in module M1 through IM1!F . When
ei is same with pj , the implicit substitution rule of TLA+ allows us to omit pj ← ei

[18, 19].
TLC[16] is a model checker for TLA+. It can traverse all possible system behaviors and check

all states to verify whether a system satisfies specific properties. However, some distributed
systems contain infinite states. For example, the TLA+ specification usually contains natural
numbers, which are infinite. To verify such systems, TLA+ introduces a model. All sets in the
model are finite, and thus the number of system states is finite. The problem of combination
explosion often occurs in model checking. In response, TLC can use the symmetry of the model
to reduce the state space. For example, it is assumed that CONSTANTS Server defines the
set of all processes in a system. In model checking, we need to instantiate it as a finite set,
i.e., Server = {S1, S2, S3}. If the system specification satisfies given properties under any
permutation of S1, S2, and S3 (e.g., S1 replaces S2; S2 replaces S3; S3 replaces S1), we can
set Server as a symmetry set[13, 21].

In TLA+, refinement relationships[12] are used to describe the logical implication
relationships between modules[18]. Refinement relationships are defined by refinement mapping.
For example, the refinement mapping ϕ from the specification ImplSpec in the module
ImplModule to the specification AbsSpec of the module AbsModule makes each variable v

in AbsSpec correspond to an expression v̄, which is defined by the variables in ImplSpec. For
each state s in ImplSpec, the refinement mapping ϕ defines the state s̄ of AbsSpec, and the value
of a variable v in s̄ is defined by v̄ in s. If σ is the behavior s1 → s2 → · · · of ImplSpec, we
define the behavior σ̄ of AbsSpec as s̄1 → s̄2 → · · · . ImplSpec implements/refines AbsSpec
(ImplSpec⇒ AbsSpec) under the refinement mapping ϕ when and only when for any behavior
σ satisfying ImplSpec, the behavior σ̄ satisfies the specification AbsSpec[14]. To check the
refinement relationship between ImplSpec and AbsSpec under the refinement mapping ϕ using
TLC, we add a definition AbsSub .

= INSTANCE AbsModule in the module ImplModule and
verify the theorem ImplSpec⇒ AbsSub!AbsSpec[18].

1.2 Distributed consensus
Distributed consensus requires multiple replica server nodes to maintain a consistent state.

Each server node can be modeled as a replicated state machine that performs state switch by
executing user commands.

State machines are generally replicated by the mechanism of replicating logs. Each server
keeps one copy of a log. A log consists of sequentially numbered (usually with natural numbers)
log entries. Each log entry stores one command from users. The server reads the next command
that has achieved consensus from the log in sequence, executes it on a state machine, and
returns the result to users. As the server executes commands in a numbered order, we call
this sequential execution. Traditional distributed consensus protocols (such as Multi-Paxos and
Raft) adopt sequential executions. Under this condition, we assume that the replicated state
machines on the replica servers have the same initial state. Then the state consistency among
servers can be ensured as long as logs are consistent. Thus, the distributed consensus problem
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can be translated to guaranteeing consistency among logs on different replica server nodes.
Specifically, the following properties should be satisfied.

• Nontriviality: Only the commands issued by users can be agreed on.
• Consistency: Each location can only achieve consensus on at most one command.
The server ensures the log matching property by running consensus protocols. In this paper,

we consider the consensus protocol of asynchronous messaging systems, whose failure models
are listed below.

• The server may fail by stop, but no Byzantine failures occur[8].
• Messages may be delayed, arrive out of order, be lost or duplicated, but the content of

messages will not be tampered with.

1.3 Paxos protocol
The Paxos protocol is the classical protocol for solving distributed consensus problems,

which allows a group of servers to agree on a single value (i.e., a single log entry). It is the basis
for Multi-Paxos. Paxos defines three roles: proposer, acceptor, and learner. Proposers propose
values; acceptors choose values; and learners learn the values that have been chosen. Paxos
consists of two phases, and each phase contains two subphases[8].

• Prepare phase (also called Phase1)
– Subphase Phase1a: The proposer chooses a globally unique number b (usually a

natural number) and sends a prepare request numbered b to all acceptors.
– Subphase Phase1b: The acceptor receives a prepare request numbered b. If it

has previously received a prepare request with a number greater than b, it ignores
the request with the number of b. Otherwise, the acceptor replies to the proposer
with the proposal having the largest number among the proposals it has accepted
(including the number and value).

• Accept phase (also called Phase2)
– Subphase Phase2a: The proposer receives responses to its prepare request

numbered b from a majority of acceptors. If the responses do not include any
proposals, the proposer can select any value (which is generally the user command
that this proposer receives). Otherwise, the proposer selects the value of the
highest-numbered response. If the proposer selects the value v, the proposer sends
the accept request < b, v > to all acceptors.

– Subphase Phase2b: An acceptor receives an accept request numbered b. If the
acceptor does not receive a request with a number greater than b, it accepts this
request. Otherwise, the acceptor ignores this accept request.

1.4 Multi-Paxos protocol
Multi-Paxos runs a separate Paxos instance for each log entry, thus supporting replica

servers to reach consensus on logs (sequences of log entries). Since Paxos instances are parallel
and independent, Multi-Paxos allows committing user commands in an out-of-order way. In
other words, it allows replica servers to reach consensus on the user command corresponding to
the log entry with a larger number, without waiting to reach consensus on previous log entries.

In practice, scholars often improve the performance of Multi-Paxos by batching messages
of phase1. In this case, the system contains a recovery phase, in which phase1 messages from
different instances are subjected to centralized processing.

The module MultiPaxos describes the Multi-Paxos protocol. It includes three constants.
• Acceptors: the set of all acceptors.
• Value: the set of all possible proposal values.
• Nil: a special symbol, which does not belong to Value.
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We use natural numbers to denote the numbers of possible proposals and the number of
each instance, i.e., BallotsNat, InstancesNat. Quorums defines a special kind of quorum system:
each of its elements is a set consisting of more than half of acceptors.

The specification of Multi-Paxos includes six variables.
• ballot: ballot[a] denotes the largest proposal number recorded by the acceptor a and the

smallest proposal number that a can accept.
• vote: vote[a][i][b] indicates the proposal value accepted by the acceptor a for the instance

numbered i when the proposal number of a is b. If a does not accept any value for the
instance numbered i when the proposal number is b, then vote[a][i][b] = Nil.

• leaderVote: leaderVote[b][i] indicates a two-tuples consisting of the proposal number b
and the value that the proposer proposes for the instance numbered i when the proposal
number is b. In the initial state, for each proposal number b and instance number i,
leaderVote[b][i] =< −1,Nil >.

• 1amsgs, 1bmsgs, and 2amsgs: different types of message sets.

----------------------------- MODULE MultiPaxos ---------------------------------
EXTENDS Integers, FiniteSets
CONSTANTS Acceptors , Nil, Value
Ballots==Nat
Instances==Nat
Quorums=={Q\in SUBSET Acceptors: Cardinality(Q)>Cardinality(Acceptors)\2}
Max(s)==CHOOSE x\in s:\for all y\in s:x\geq y
VARIABLES ballot, vote, leaderVote , 1amsgs, 1bmsgs, 2amsgs

The main actions defined by the protocol include the followings:
• Phase1a(b): It corresponds to Phase1a of Paxos. The proposer selects the proposal

number b and sends the prepare request to other nodes with a proposal number of b.
• Phase1b(a, b): It corresponds to Phase1b of Paxos. Node a receives the vote request

numbered b. If b >ballot[a], a sets ballot[a] to b. For each instance number i, a replies
to proposers with the value and the number of the highest-numbered proposal it has
accepted.

Phase1a(b)==
/\1amsgs ’=1amsgs\cup {〈〈b〉〉}
/\UNCHANGED 〈〈ballot,vote,leaderVote ,1bmsgs ,2amsgs〉〉

MaxAcceptorVote(a,i)==
LET maxBallot==Max({b\in Ballots:vote[a][i][b]#Nil}\cup {-1})
v==IF maxBallot >-1 THEN vote[a][i][maxBallot] ELSE Nil

IN 〈〈maxBallot ,v〉〉

Phase1b(a,b)==
/\ballot[a]<b
/\〈〈b〉〉\in 1amsgs
/\ballot ’=[ballot EXCEPT ![a]=b]
/\1bmsgs ’=1bmsgs\cup
{〈〈b,{〈〈i,MaxAcceptorVote(a,i)〉〉:i\in Instances},a〉〉}

/\UNCHANGED 〈〈vote,leaderVote ,1amsgs ,2amsgs〉〉

IncreaseBallot(a,b)==
/\ballot[a]<b
/\ballot ’=[ballot EXCEPT ![a]=b]
/\UNCHANGED 〈〈vote,leaderVote ,1amsgs ,1bmsgs,2amsgs〉〉

• Merge(b): It corresponds to Phase2a of Paxos together with action Propose(b, i),
Phase2a(b, i). In the merge action, the proposer updates its log depending on the received
vote responses, but does not initiate an accept request. When the proposer who initiates
the prepare request numbered b receives a reply from a majority, it selects proposal values
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according to responses (with the method described in Phase2a of Paxos) for each instance
number i and saves them in leaderVote[b][i]. It should be noted that leaderVote[b][i] can
be updated only if it has not been modified previously (leaderVote[b][i] =< −1,Nil >).
In Multi-Paxos, each proposal number can only have one proposer to initiate the vote,
and only one proposal value can be proposed for each instance number.

• Propose(b, i): The proposer proposes a proposal value for the instance number i. If
leaderVote[b][i] =< −1,Nil >, the proposer chooses a legitimate proposal value v to
update leaderVote[b][i] =< b, v > and initiates a request. Otherwise, the proposer sends
the leaderVote[b][i] directly to acceptors.

• Phase2a(b, i): The proposer initiates the accept request in accordance with the proposal
value confirmed by Merge(b) and Propose(b, i) for the instance number i.

• Vote(a, b, i): It corresponds to Phase2b of Paxos. The acceptor a receives the accept
request with a proposal number of b and an instance number i. If b is not smaller than
the proposal number of a (b > ballot[a]), a accepts the accept request and updates
vote[a][i][b] to the corresponding proposal value.

1bMsgs(b,Q)=={m\in 1bmsgs:m[3]\in Q/\m[1]=b}

MaxVote(b,i,Q)==
LET entries==UNION {m[2]:m\in 1bMsgs(b,Q)}
ientries=={e\in entries:e[1]=i}
maxBal==Max({e[2][1]:e\in ientries})

IN CHOOSE v\in Value\cup {Nil}:\E e\in ientries:
/\e[2][1]=maxBal/\e[2][2]=v

lastInstance(b,Q)==LET entries==UNION {m[2]:m\in 1bMsgs(b,Q)}
valid=={e\in entries:e[2][1]/=-1}

IN IF valid={·} THEN -1 ELSE Max({e[1]:e\in valid})
Merge(b)==/\\E Q\in Quorums:

/\\A a\in Q:\E m\in 1bMsgs(b,Q):m[3]=a
/\leaderVote ’=[leaderVote EXCEPT ![b]=[i\in Instances 7→
IF (/\i\in 0..lastInstance(b,Q)
/\leaderVote[b][i][1]=-1)

THEN 〈〈b,MaxVote(b,i,Q)〉〉
ELSE leaderVote[b][i]]]

/\UNCHANGED 〈〈vote,ballot ,1amsgs ,1bmsgs ,2amsgs〉〉

Propose(b,i)==/\leaderVote[b][i][1]=-1
/\\E Q\in Quorums:
/\\A a\in Q:\E m\in 1bMsgs(b,Q):m[3]=a
/\LET maxV==MaxVote(b,i,Q)
safe==IF maxV/=Nil THEN {maxV} ELSE
Value \cup {Nil}

IN \E v\in safe: leaderVote ’=[leaderVote EXCEPT ![b][i]=〈〈b,v〉〉]
/\UNCHANGED 〈〈vote,ballot ,1amsgs ,1bmsgs,2amsgs〉〉

Phase2a(b,i)==
/\leaderVote[b][i][1]=b
/\2amsgs ’=2amsgs\cup {〈〈b,i,leaderVote[b][i]〉〉}
/\UNCHANGED 〈〈ballot,vote,leaderVote ,1amsgs ,1bmsgs〉〉

Vote(a,b,i)==
/\ballot[a]\leq b
/\ballot ’=[ballot EXCEPT ![a]=b]
/\\E m\in 2amsgs:
/\m[2]=i/\m[1]=b
/\vote’=[vote EXCEPT ![a][i][b]=m[3][2]]

/\UNCHANGED 〈〈leaderVote ,1amsgs,1bmsgs,2amsgs〉〉

Next defines the substate relationship, and Spec defines the complete behavior specification.
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Next==
\/\E a\in Acceptors ,b\in Ballots:IncreaseBallot(a,b)
\/\E b\in Ballots:Phase1a(b)
\/\E a\in Acceptors ,b\in Ballots:Phase1b(a,b)
\/\E b\in Ballots:Merge(b)
\/\E b\in Ballots,i\in Instances:Propose(b,i)
\/\E b\in Ballots,i\in Instances:Phase2a(b,i)
\/\E a\in Acceptors ,b\in Ballots,i\in Instances:Vote(a,b,i)

Spec==Init/\[·][Next]_〈〈leaderVote ,ballot,vote,1amsgs,1bmsgs,2amsgs〉〉

1.5 Raft protocol
Raft is a more understandable distributed consensus protocol[10] that enhances serializability

among log entries and simplifies the protocol design. Each node in Raft maintains an incremental
variable called term. A term is essentially a logical clock jointly maintained by nodes. Through
terms, nodes can discover outdated messages. Specifically, nodes should carry their current
terms when sending messages. If the term value carried by a message that a node receives is
smaller than the current term value of the node, the node rejects this message. Otherwise, the
node updates its term value. When a node adds a new log entry to the log, it saves its current
term value in the log entry as well, which becomes the term of this log entry.

Nodes in Raft have three roles, i.e., leader, follower, and candidate. In the initial state, all
nodes are followers. The Raft protocol consists of two main parts: electing a leader and the
leader synchronizing logs to followers. Under normal circumstances, the leader periodically
sends heartbeat signals to other nodes to maintain authority. When a follower does not receive
a heartbeat signal for a period of time, it is transformed to a candidate. The candidate first
increases its own term and sends the term to all nodes to initiate the election. After receiving the
election request, a node will compare its own term with the term carried by the election request.
If its own term is larger, or if it has already voted for another candidate during the term, it rejects
this election request. The candidate receiving votes from the majority becomes the new leader.
The majority voting mechanism of Raft ensures election safety[10]: There is at most one leader
in a term. To ensure the completeness of the new leader, namely that its log should contain all
the log entries that have been committed, Raft introduces the following rule. A node will reject
this vote request if the log of the candidate is older than its own log[10]. We can determine the
oldness of logs by comparing the number and the term (which are called lastIndex and lastTerm)
of the highest-numbered log entry of nodes[10].

The leader synchronizes log entries to followers according to the log number order, and the
followers should accept log entries of the leader in the number order. A follower cannot accept a
log entry with a larger number until it receives the log entry with a smaller number. The leader
and followers maintain the next acceptable number by an ack mechanism. Unlike Multi-Paxos,
where instances send and receive log entries independently, Raft establishes a fully sequential
relationship of all log entries by numbering. By such a restriction, logs of nodes in Raft do not
have holes, and the log matching property between nodes is guaranteed[10]. If the logs of two
nodes have the same log entries at the same location, then the log entries at all previous locations
must also be the same. According to log matching property, if a log entry has been committed,
then all the log entries with smaller numbers in the log have also been committed.

2 ParallelRaft-SE Protocol and Refinement
Raft requires sequential commitment and sequential executions of user commands and

this makes it unsuitable for highly concurrent systems[7]. Thus, Alibaba proposed ParallelRaft
based on Raft, which allows out-of-order commitment and out-of-order executions of user
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commands[7]. To clarify the relationship between ParallelRaft and Raft, we propose ParallelRaft-
SE. ParallelRaft-SE allows out-of-order commitment but prohibits out-of-order executions
of user commands. Thus, ParallelRaft-SE can be viewed as a sequential execution version
of ParallelRaft. To verify the correctness of ParallelRaft-SE, we establish the refinement
relationship between ParallelRaft-SE and Multi-Paxos.

2.1 ParallelRaft-SE protocol
ParallelRaft-SE follows roles (leader, follower, and candidate), the concept of term, and the

leader election mechanism in Raft. The ParallelRaft-SE protocol consists of three main parts:
the leader synchronizing logs to followers, leader election, and log recovery.

In ParallelRaft-SE, the leader can send multiple log entries to followers concurrently.
Followers accept and acknowledge the log entries immediately after receiving them without
waiting for log entries with smaller numbers. Thus, ParallelRaft-SE supports out-of-order
acceptance and commitment of logs.

The election mechanism of ParallelRaft-SE is basically the same as that of Raft, and they
both need to ensure the election safety. The difference is that since ParallelRaft-SE does not
have the serializability as Raft, there may be holes in the logs of nodes. Thus, during election,
ParallelRaft-SE cannot guarantee the completeness of the new leader by comparing the oldness
of logs. Thus, ParallelRaft-SE adds a log recovery phase.

The basic idea of log recovery in ParallelRaft-SE is that the new leader collects logs from
other nodes and runs the Paxos protocol, so as to recover those log entries that may have been
committed but are not stored by the new leader.

After recovery, the new leader satisfies completeness and can then synchronize log entries
to followers.

The specification of ParallelRaft-SE uses the following constants and variables (only the
ones that are newly introduced compared with Multi-Paxos are presented).

• Server is the set of all nodes participating in the consensus.
• Follower, candidate, and leader are three different states of servers.
• r1amsgs, r1bmsgs, r2amsgs, r2bmsgs, r3amsgs, and negMsgs are sets of different types

of messages.
• currentTerm[i] is the maximum term recorded by node i.
• currentState[i] is the state of the node i, which is one of Follower, Candidate, and Leader

at any time.
• vote[i][n][t] indicates the log entry with the number of n that is accepted by the node i

in the term t. The vote is introduced to realize the refinement from ParallelRaft-SE to
Multi-Paxos, which is not required in practical protocols.

• leaderLog records the log of the new leader in each term. leaderLog is also used to
establish the refinement from ParallelRaft-SE to Multi-Paxos, which is not required in
practical protocols. leaderLog[t][n] indicates the log entry numbered n in the log of the
leader in the term t. Each log entry is a three-tuples in the form of < t′, v, b >, where t′

indicates the term of the log entry; v is the proposal value; b is a Boolean value. When
and only when the log entry is committed, b is true.

• log[i][n] indicates the log entry numbered n in the log of the node i.

--------------------------- MODULE ParallelRaft -SE ---------------------------
EXTENDS Integers,FiniteSets ,Sequences ,TLC
CONSTANTS Server,Follower ,Candidate ,Leader,Nil,Value

Quorums=={i\in SUBSET(Server):Cardinality(i)*2>Cardinality(Server)}
Index==Nat
Term==Nat
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VARIABLE r1amsgs,r1bmsgs,r2amsgs,r2bmsgs,r3amsgs,negMsgs,currentTerm ,
currentState ,vote,leaderLog ,log

serverVars==〈〈currentTerm ,currentState〉〉
vars==〈〈r1amsgs,r1bmsgs,r2amsgs,r2bmsgs,r3amsgs,negMsgs,log,serverVars ,

leaderLog ,vote〉〉

The major actions include the followings:
• Timeout(i): If a follower or candidate i times out as it has not received a message from

the leader, it increases its own term (currentTerm′[i] = currentTerm[i] + 1) and changes
itself to a candidate (currentState′[i] = Candidate).

• RequestVote(i): A candidate i sends its own term to other nodes to initiate an election
request.

• HandleRequestVote(i): A node i receives the election request m. If the term carried by
m is greater than that of i (m[1] > currentTerm[i]), i upgrades its term, accepts this
election request, and sends its log to candidates. Otherwise, i rejects this election request.

Timeout(i)==
/\currentState[i]\in {Follower,Candidate}
/\currentTerm ’=[currentTerm EXCEPT ![i]=currentTerm[i]+1]
/\currentState ’=[currentState EXCEPT ![i]=Candidate]
/\UNCHANGED 〈〈r1amsgs,r1bmsgs,log,r2amsgs,r2bmsgs,r3amsgs,negMsgs,

leaderLog ,vote〉〉

RequestVote(i)==
/\currentState[i]=Candidate
/\r1amsgs ’=r1amsgs\cup {〈〈currentTerm[i],i〉〉}
/\UNCHANGED 〈〈serverVars ,r1bmsgs,log,r2amsgs,r2bmsgs,r3amsgs,negMsgs,

leaderLog ,vote〉〉

HandleRequestVoteRequest(i)==
/\\E m\in r1amsgs:
LET j==m[2]
grant==m[1]>currentTerm[i]
entries=={〈〈n,log[i][n]〉〉:n\in Index}

IN
\//\grant
/\UpdateTerm(i,m[1])
/\r1bmsgs ’=r1bmsgs\cup {〈〈m[1],entries,i,j〉〉}
/\UNCHANGED negMsgs

\//\\neg grant
/\negMsgs ’=negMsgs\cup {〈〈currentTerm[i],j〉〉}
/\UNCHANGED 〈〈currentState ,currentTerm ,r1bmsgs〉〉

/\UNCHANGED 〈〈log,r1amsgs,r2amsgs,r2bmsgs,r3amsgs,vote,leaderLog〉〉

• BecomeLeader(i): The candidate i that receives the majority of votes becomes the leader
and restores the log entries that may be missing depending on received logs. For each
log number n, log entries numbered n that it receives are examined. The log entry with
the largest term is selected, and the term of this log entry is modified to the term of
i. To establish the refinement relationship between ParallelRaft-SE and Multi-Paxos,
leaderLog is modified in the recovery process instead of log[i] being modified directly.
After that, i can send the RequestSync request to itself to update the log.

• RequestSync(i): The leader i synchronizes log entries to other nodes.

Merge(entries,term)==
LET committed=={e\in entries:e[3]=TRUE}

chosen==
CASE committed={· } CHOOSE x\in entries:

\A y\in entries:x[1]\geq y[1]
[·] committed/={· } CHOOSE x\in committed:TRUE

safe==chosen[2]
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IN 〈〈term,safe,chosen[3]〉〉

BecomeLeader(i)==
/\currentState[i]=Candidate
/\\E Q\in Quorums:
LET voteGranted=={m\in r1bmsgs:m[4]=i/\m[3]\in Q

/\m[1]=currentTerm[i]}
allLog==UNION {m[2]:m\in voteGranted}
valid=={e\in allLog:e[2][1]/=-1}
end==IF valid={·} THEN -1 ELSE Max({e[1]:e\in valid})

IN
/\\A q\in Q:\E m\in voteGranted:m[3]=q
/\leaderLog ’=[leaderLog EXCEPT ![currentTerm[i]]=

[n\in Index 7→ IF n\in 0..end THEN
Merge({l[2]:l\in {t\in allLog:t[1]=n}},currentTerm[i])
ELSE 〈〈-1,Nil,FALSE〉〉]]

/\currentState ’=[currentState EXCEPT ![i]=Leader]
/\UNCHANGED 〈〈currentTerm ,r1amsgs,r2amsgs,r1bmsgs,r2bmsgs,r3amsgs,

negMsgs,log,vote〉〉

RequestSync(i)==
/\currentState[i]=Leader
/\LET sync=={n\in Index:leaderLog[currentTerm[i]][n][1]/=-1}
IN
\E n\in sync:r2amsgs ’=r2amsgs\cup
{〈〈currentTerm[i],n,leaderLog[currentTerm[i]][n],i〉〉}

/\UNCHANGED 〈〈serverVars ,log,r1amsgs,r1bmsgs,r2bmsgs,
r3amsgs,negMsgs,leaderLog ,vote〉〉

• HandleRequestSyncRequest(i): After i receives the RequestSync request m, if the term
carried by m is not smaller than the term of i (m[1] > currentTerm[i]), i receives this
request and upgrades its own term. At the same time, i updates log[i] and vote, and
replies with acknowledgement.

• CommitEntry(i): After receiving an acknowledgement from a majority of nodes for a
log entry, the leader i marks the log entry as committed.

• RequestCommit(i): The leader sends the committed log entries to other nodes.

HandleRequestSyncRequest(i)==
/\\E m\in r2amsgs:
LET j==m[4]
grant==m[1]\geq currentTerm[i]

IN
/\\//\m[1]>currentTerm[i]

/\UpdateTerm(i,m[1])
\//\m[1]\leq currentTerm[i]
/\UNCHANGED 〈〈currentTerm ,currentState〉〉

/\\//\grant
/\log’=[log EXCEPT ![i][m[2]]=m[3]]
/\vote’=[vote EXCEPT ![i][m[2]][m[1]]=m[3][2]]
/\r2bmsgs ’=r2bmsgs\cup {〈〈m[1],m[2],i,j〉〉}
/\UNCHANGED negMsgs

\//\\neg grant
/\negMsgs ’=negMsgs\cup {〈〈currentTerm[i],j〉〉}
/\UNCHANGED 〈〈vote,r2bmsgs,log〉〉

/\UNCHANGED 〈〈r1amsgs,r1bmsgs,r2amsgs,r3amsgs,leaderLog〉〉

CommitEntry(i)==
/\\E index\in Index,Q\in Quorums:
LET syncSuccess=={m\in r2bmsgs:

m[4]=i/\m[3]\in Q
/\m[1]=currentTerm[i]/\m[2]=index}

IN
/\currentState[i]=Leader
/\\A q\in Q:\E m \in syncSuccess:m[3]=q
/\leaderLog ’=[leaderLog EXCEPT ![currentTerm[i]][index][3]=TRUE]

/\UNCHANGED 〈〈serverVars ,log,r1amsgs,r1bmsgs,r2amsgs,r2bmsgs,
r3amsgs,negMsgs,vote〉〉
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RequestCommit(i)==
/\currentState[i]=Leader
/\LET committed=={n\in Index:leaderLog[currentTerm[i]][n][3]=TRUE} IN
\E n\in committed:r3amsgs ’=r3amsgs\cup {〈〈currentTerm[i],n,i〉〉}

/\UNCHANGED 〈〈serverVars ,log,r1amsgs,r1bmsgs,r2amsgs,r2bmsgs,
negMsgs,leaderLog ,vote〉〉

• HandleRequestCommit(i): After a node i receives a RequestCommit request m from the
leader, if the term carried bym is not smaller than the term of i, imarks the corresponding
log entry as committed.

• ClientRequest(i): After receiving a user command v, the leader i adds v as a new log
entry to the log.

HandleRequestCommitRequest(i)==
/\\E m\in r3amsgs:
LET grant==currentTerm[i]\leq m[1]

j==m[3]
IN
/\\//\m[1]>currentTerm[i]

/\UpdateTerm(i,m[1])
\//\m[1]\leq currentTerm[i]
/\UNCHANGED 〈〈currentTerm ,currentState〉〉

/\\//\grant
/\log[i][m[2]][1]=m[1]
/\log’=[log EXCEPT ![i][m[2]][3]=TRUE]
/\UNCHANGED negMsgs

\//\\neg grant
/\negMsgs ’=negMsgs\cup {〈〈currentTerm[i],j〉〉}
/\UNCHANGED log

/\UNCHANGED 〈〈serverVars ,r1amsgs,r1bmsgs,r2amsgs,r2bmsgs,
r3amsgs,leaderLog ,vote〉〉

ClientRequest(i)==
LET ind=={b\in Index:leaderLog[currentTerm[i]][b][1]/=-1}
nextIndex==IF ind={·}
THEN 0
ELSE Max(ind)+1

IN
/\currentState[i]=Leader
/\\E v\in Value:leaderLog ’=[leaderLog EXCEPT ![currentTerm[i]][nextIndex]=

〈〈currentTerm[i],v,FALSE〉〉]
/\UNCHANGED 〈〈serverVars ,log,r1amsgs,r1bmsgs,r2amsgs,r2bmsgs,r3amsgs,

negMsgs,vote〉〉

Next defines the substate relationship. Spec defines the complete behavior specification.

Next==\/\E i\in Server:Timeout(i)
\/\E i\in Server:RequestVote(i)
\/\E i\in Server:HandleRequestVoteRequest(i)
\/\E i\in Server:BecomeLeader(i)
\/\E i\in Server:CommitEntry(i)
\/\E i\in Server:ClientRequest(i)
\/\E i,j\in Server:RequestCommit(i)
\/\E i\in Server:HandleRequestCommitRequest(i)
\/\E i,j\in Server:RequestSync(i)
\/\E i\in Server:HandleRequestSyncRequest(i)

Spec==Init/\[·][Next]_vars

2.2 Refinement from ParallelRaft-SE to Multi-Paxos
ParallelRaft-SE supports out-of-order commitment and sequential executions of user

commands, which is the same as Multi-Paxos. Moreover, the log recovery phase of ParallelRaft-
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SE essentially uses Paxos to reconfirm the log entries that may be missing, while Multi-
Paxos initiates proposals through Paxos. In fact, we can establish the refinement relationship
between ParallelRaft-SE and Multi-Paxos, thus proving the correctness of ParallelRaft-SE.
This refinement relationship is based on the following similarities between ParallelRaft-SE and
Multi-Paxos.

• RequestVote corresponds to Phase1a. The term in ParallelRaft-SE corresponds to the
proposal number of Multi-Paxos.

• HandleRequestVote corresponds to Phase1b. The two both need to compare terms/pro-
posal numbers to decide whether to agree an election/accept a proposal request, and the
two both need to include their own logs in responses.

• BecomeLeader corresponds to Merge. The leader/proposer that receives replies from the
majority runs Paxos to recover log entries that may be missing.

• RequestSync corresponds to Phase2a. In ParallelRaft-SE, the leader synchronizes log
entries to followers after completing log recovery. In Multi-Paxos, the proposer selects
the proposal value by running Paxos and synchronizes it to acceptors.

• HandleRequestSync corresponds to Vote. In ParallelRaft-SE, followers update their logs
after receiving the synchronization request. In Multi-Paxos, acceptors accept the proposal
and record it locally after receiving the proposal from the proposer.

• ClientRequest corresponds to Propose. In ParallelRaft-SE, the leader accepts the user
command and adds it to the end of the log as a log entry. In Multi-Paxos, if the proposer
does not receive a proposal value for a certain number, it can propose any legitimate
value. Thus, it can add a legitimate log entry to the end of the log.

The ParallelRaft-SE specification provides the refinement mapping between constants and
variables in ParallelRaft-SE and Multi-Paxos.

Acceptors==Server
Ballots==Term
Instances==Index
ballot==currentTerm
leaderVote==[i\in Ballots 7→ [j\in Index 7→ 〈〈leaderLog[i][j][1],leaderLog[i][j]

[2]〉〉]]
1amsgs=={〈〈m[1]〉〉:m\in r1amsgs}
1bmsgs=={〈〈m[1],{〈〈e[1],〈〈e[2][1],e[2][2]〉〉〉〉:e\in m[2]},m[3]〉〉:m\in r1bmsgs}
2amsgs=={〈〈m[1],m[2],〈〈m[3][1],m[3][2]〉〉〉〉:m\in r2amsgs}

Spec==Init/\[·][Next]_vars

MP==INSTANCE MultiPaxos

THEOREM Refinement==Spec MP!Spec

3 Model of Out-of-Order Executions and “Ghost Log Entries”
Compared to Raft, ParallelRaft-SE supports out-of-order commitment. However, it still

requires sequential executions of user commands and is thus not suitable for highly concurrent
systems. In application scenarios of PolarFS, ParallelRaft needs to support out-of-order
executions. In other words, it allows state machines to execute committed log entries with a
larger number first without having to wait for log entries with a smaller number to be committed
or executed[7]. To satisfy state consistency despite out-of-order executions, it is necessary to
ensure that commands executed out of order are conflict-free. Thus, this section first describes
the out-of-order execution model used by ParallelRaft. In analyzing the correctness of the
ParallelRaft protocol, we find that the description of ParallelRaft in Reference [7] ignores the
“ghost log entries” phenomenon that may violate state consistency. This section analyzes the
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challenges that this phenomenon poses to the out-of-order execution mechanism.

3.1 Out-of-order execution model
The out-of-order execution model of ParallelRaft provides rules for determining conflicts

between user commands[7]. In the application scenarios of PolarFS, each user command includes
the Logic Block Address (LBA) of the data accessed by this command. Commands with non-
overlapping LBAs do not have conflicts and can be executed in an out-of-order way. In contrast,
commands with overlapping LBAs need to be executed sequentially according to the log number.

In this model, we should first check if a command conflicts with a command numbered
smaller before this command is executed. Since log entries are accepted out of order (and may
not have been committed yet), there may be holes in the log. To determine whether the current
command is executable despite that there are holes, ParallelRaft requires each log entry to record
the LBAs of K (a parameter to be determined) log entries before it, called the Look Behind
buFfer (LBF). Thus, it is possible to determine whether there is a conflict between any two log
entries/commands as long as there is no hole with a length greater than K in the log. Otherwise,
the log entries after the “hole” need to wait.

3.2 “Ghost log entries” phenomenon
After log recovery, there is no hole in the log of the leader in ParallelRaft, so it can calculate

LBF for each log entry. Afterward, the leader can send LBF to followers along with log entries.
Proper conflict determination requires that the LBF of each log entry accurately records the
LBAs of K log entries before it. However, the “ghost log entries” phenomenon may cause the
LBF calculated by the leader to be different from the actual one. Figure 2 depicts the “ghost log
entries” phenomenon, which consists of three phases (Each square in the figure represents a log
entry, which records the term of the log entry and the user command it carries. The log entries
are numbered from 1).

(1) As shown in Figure 1(a), s1 is the leader in phase 1. s1 adds four log entries numbered
from 1 to 4 to the log. The log entries numbered 1 and 2 are accepted by s2 and s3, and
these two log entries are committed. The log entries numbered 3 and 4 have not been
accepted by s2 and s3. s1 fails.

(a) (b)

Figure 1 The “ghost log entries” phenonmenon violates consistency

(2) In phase 2, s3 becomes the leader. s3 does not receive uncommitted entries from s1
during the recovery process (it should be noted that s3 only needs to collect log entries
from the majority of nodes). Thus, after the recovery is completed, the log of s3 does
not contain the uncommitted log entries of s1. As shown in Figure 1(a), s3 adds new
log entries numbered from 3 to 6 to the log afterward and sends the log entry numbered
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6 to s2. This log entry is committed. As this entry is a modification of y (y ← 2), there
is no conflict with previous log entries. As a result, s3 executes y ← 2 (out-of-order
execution). After that, s3 also fails and the system elects a new leader s2.

(3) As shown in Figure 1(b), s3 receives an uncommitted log entry (numbered 4) from s1
(s1 is normal currently) during the recovery process in phase 3 and sends it to s3. After
this entry is committed, s3 needs to execute it. It is also a modification of the variable y

(y ← 3), which should be executed first according to the rules of out-of-order execution.
However, s3 has executed y ← 2, so an inconsistent execution order is caused.

(a) (b)

Figure 2 Passive way to address the “ghost log entries” phenomenon

The uncommitted log entries of s1 in phase 1 are not in the log of the leader s3 in phase
2, but then appear in the log of the leader s2 in phase 3. We call this “ghost log entries”
phenomenon. This makes the LBF calculated by s3 not consistent with the actual one, which
may lead to a wrong conflict determination. This further affects the correctness of ParallelRaft-
SE (ParallelRaft) in the out-of-order execution. The key to avoiding the “ghost log entries”
phenomenon is that during the log recovery process, the leader s3 in phase 2 needs to specify
the state of uncommitted log entries in s1. They are either recommitted or deleted and would
not be committed by a leader later. The “ghost log entries” phenomenon can also occur in the
case of sequential executions (e.g., Multi-Paxos and Raft), but does not affect the correctness
of the protocols. In sequential executions, the “ghost log entries” phenomenon is easily solved.
Then we will apply the Multi-Paxos solution to ParallelRaft-SE and briefly discuss the solution
in Raft to the “ghost log entries” phenomenon. We will show that these solutions cannot address
the “ghost log entries” phenomenon in the mode of out-of-order executions.

3.3 Solution of Multi-Paxos
Multi-Paxos uses a passive solution. The proposer saves the generation moment of a log

entry when it is added (i.e., the proposal number of the proposer generating this log entry).
Nodes can detect the “ghost log entries” phenomenon by the generation moment of log entries
and ignore them. In view of this, the new proposer writes a special no-op log entry, called a
barrier, in the log after the recovery process. Only after the barrier log entry has been committed
can the proposer add a new log entry to the log. Thus, the barrier marks the end of the log
recovery and the starting point for the new proposer to add log entries. If the generation moment
of a log entry afterward is smaller than that of the barrier, it is considered a “ghost log entry”.

As shown in Figure 2(a), the two-tuple of each log entry records the proposal number
(which may be changed later) and the generation moment of the log entry, respectively. s1 is
the proposer of the proposal numbered 1, which adds the log entries with log numbers 1–4 to
the log. Their proposal numbers and generation moments are all 1. The log entries numbered
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3 and 4 are not committed. After that, s1 fails and s3 becomes the proposer of the proposal
numbered 2. After s3 receives the log entries of s2 and completes the recovery process, it writes
a barrier (which is numbered 3 and marked with B in the figure) in the log, whose proposal
number and generation moment are both 2. s3 first sends the barrier to s2 and commits it. Then,
s3 responses to user commands and adds log entries numbered 4–6 to the log. The log entry
numbered 6 is accepted (and thus committed) by s2. s3 fails after executing this log entry.

s2 becomes the proposer of the proposal numbered 3. As shown in Figure 2(b), s2 finds
the log entry numbered 4 (y ← 3) from the log of s1 and adds it to its log in the recovery
process. The number of this proposal is 3, but its generation moment is 1 as it is written by s1
in the log. The barrier numbered 3 in the log of s2 has the generation moment of 2. Thus, s2
can determine that the log entry numbered 4 is a “ghost log entry.” s2 deletes this entry from
the log, thus solving the “ghost log entries” problem.

3.4 Solution in Raft
Raft uses a proactive solution[22]. The limitation in the leader election mechanism is used,

making the node with “ghost log entries” unable to become a new leader. Thus, the new leader
elected in Raft adds a barrier to the log. Only after the barrier is committed can the new leader
respond to user requests. According to the election rules of Raft, a node without a barrier cannot
be a leader (it cannot get the majority of votes due to its old log). On the other hand, the node
that receives the barrier deletes all log entries after the barrier in the synchronization phase of
log entries. As a result, there are no “ghost log entries.”

As shown in Figure 3(a), s1 is the leader of the term 1, and it writes four log entries
numbered 1–4 in the log. The log entries numbered 3 and 4 have not been committed yet, and
s2 becomes the leader. As shown in Figure 3(b), after s2 becomes the leader of the term 2, it
first writes a barrier to the log and commits it. Then s2 can respond to user requests. Even if s2
fails afterward, according to the leader election rules of Raft, s1 needs to delete the redundant
log entries (numbered 3 and 4) and add the barrier first if it wants to be the leader. Thus, the log
entries numbered 3 and 4 will not appear in the log of the new leader.

(a) (b)

Figure 3 Proactive way to address the “ghost log entries” phenomenon

3.5 Challenge in out-of-order executions
Applying the solution of Multi-Paxos to the “ghost log entries” phenomenon directly to

ParallelRaft-SE cannot guarantee the correctness of ParallelRaft-SE (or ParallelRaft) in out-
of-order executions. In other words, the “ghost log entries” phenomenon is not a necessary
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condition for an inconsistent state in the case of out-of-order executions. For example, the log
of the leader i contains uncommitted log entries. When the leader changes, i receives the log
entries of the new leader out of order. i is unaware that the uncommitted log entries in the
log are out of date and thus mistakenly believes that there is no conflict, leading to inconsistent
behavior.

On the other hand, Raft uses serializability to eliminate the “ghost log entries” phenomenon
during the election process. However, ParallelRaft-SE supports out-of-order commitment, and
there may be holes in the log. This makes it impossible to apply the solution of Raft directly to
ParallelRaft-SE as well.

4 ParallelRaft-CE Protocol and Specification
To get rid of the “ghost log entries” phenomenon in out-of-order executions, we propose

the ParallelRaft-CE protocol based on ParallelRaft-SE. ParallelRaft-CE avoids the “ghost log
entries” phenomenon and ensures the consistency of state machines in out-of-order executions by
limiting the parallelism of ParallelRaft-SE in the out-of-order commitment phase. ParallelRaft-
CE mainly includes three parts: the log synchronization mechanism, the leader election
mechanism, and the log recovery mechanism.

We first provide some key properties of ParallelRaft-CE. The concepts of sync number and
candidate of the leader will be introduced in the following protocol description. The next section
will briefly demonstrate these key properties and the correctness of ParallelRaft-CE.

(1) The term of a node increases monotonically with the sync number.
(2) Election safety: At most one leader is elected in one term.
(3) Let the term of a leader candidate be t and the sync number be s. Then s < t and there

are no log entries with a term greater than s in the system.
(4) Leader completeness: If the term of the leader is t, its log includes all committed log

entries whose term is smaller than t.
(5) Consistency: For any two nodes, if their sync numbers are both greater than a term

number t, their logs contain the same log entries with a term of t.

4.1 Log synchronization mechanism
In ParallelRaft-CE, log entries are sent and accepted out of order partially. The log entries

with a same term can be sent and accepted concurrently, while log entries with different terms
need to be sent and received sequentially. Thus, each node maintains a sync number, which
indicates that the current node only accepts log entries with a term equal to the sync number.
When a follower receives a log entry from the leader, it checks the term of the log entry. If the
term of the log entry is the same as the sync number of the follower, the follower accepts this log
entry and replies with an acknowledge message. Otherwise, the follower rejects this log entry
and sends its own sync number to the leader. The leader also maintains the sync number of each
follower. After receiving a sync number from a follower, the leader upgrades the sync number
of the follower it records. After a follower acknowledges all log entries in the current term, the
leader notifies the follower to set the sync number to the next term. This log synchronization
mechanism limits the parallelism of the commitment phase.

4.2 Leader election mechanism
The leader election mechanism of ParallelRaft-CE is similar to that of Raft. The difference

is that ParallelRaft-CE determines the generation moment of log entries by the sync number.
A larger sync number of a node indicates that its log is newer. When a candidate initiates an
election, it sends its own sync number to other nodes as well. The receiving node agrees this
election request only when its sync number is not greater than the sync number of the candidate.
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4.3 Log recovery mechanism
In ParallelRaft-CE, the log entries with the same term can be sent and accepted concurrently.

Thus, there may be “holes” in the log and the new leader needs to recover the log entries of the
previous term. The goal of recovery is to upgrade the sync number of the leader to its term. At
this point, the system has reached a consensus on all log entries with terms smaller than the term
of the leader. The leader that has not yet completed the log recovery is called a leader candidate.
After the recovery, the states of all log entries with terms smaller than the term of the leader are
determined: Log entries that have been committed (or executed) are still in the log of the new
leader. The previously uncommitted log entries are either committed or discarded and will not
be committed again.

Let the term of the leader candidate l be t and the sync number be s (s < t according to the
property 3). According to the property 5, the system has reached a consensus on log entries with
terms smaller than s. As shown by property 3, there are no log entries with terms exceeding
s in the system. Thus, l only needs to recover log entries with the term of s. The method of
recovering log entries is the same as that in ParallelRaft-SE (or Multi-Paxos). l collects log
entries from the majority of nodes and selects the latest log entry. As the term of a log entry is
unchanged, ParallelRaft-CE adds a new variable for each log entry, date, which is equivalent to
the proposal number of the log entry in Paxos. For the log entries with the same number, the
one with a bigger date is newer.

l needs to synchronize the recovered log entries to followers in three phases. Let the sync
number of the follower that l records be n. If n > s, the synchronization enters directly the
phase 3. If n = s, the synchronization goes directly to phase 2. Otherwise, the synchronization
arrives at phase 1 first.

Phase 1 (n < s): l first sends log entries with a term of n to the follower. When these
entries are all acknowledged by the follower, l notifies the follower to upgrade to the next sync
number k that satisfies the following conditions:

(1) k > n;
(2) The log of l contains log entries with a term of k;
(3) k is a minimum value that satisfies conditions 1 and 2.

After receiving the request of upgrading the sync number, the follower deletes all
unacknowledged log entries with a term of n in the log and upgrades the sync number to
k. Then, the leader candidate sends the log entries with a term of k to the follower. The above
steps are repeated until the sync number of the follower is upgraded to s. The synchronization
enters phase 2.

Phase 2 (n = s): l continues to synchronize log entries to the follower until all log entries
with a term of s are acknowledged by the follower. The synchronization goes to phase 3.

Phase 3 (n > s): l waits until all log entries with a term of s are committed by the same
majority, which is denoted as Q. Then l upgrades its sync number to its own term t (which is
safe according to property 3). After l receives acknowledge from a majority of nodes (all from
Q), the recovery process ends and l officially becomes the leader.

4.4 TLA+ specification of ParallelRaft-CE
ParallelRaft-CE uses the constant LeaderCandidate to represent the leader candidate. The

variables include the followings:
• messages indicates the set of messages sent by nodes.
• currentTerm[i] indicates the maximum term recorded by the node i.
• currentState[i] indicates the state of the node i, which is one of Leader, LeaderCandidate,

Follower, and Candidate.
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• votedFor indicates that each node can only vote for one candidate in a term. votedFor[i]
indicates the candidate that i votes for in the current term (currentTerm[i]). If i does not
vote for any node, votedFor[i] = Nil.

• sync[i] indicates the sync number of the node i.
• end[i][t] indicates the maximum number of acceptable log entries recorded by the node
i with a term of t. ParallelRaft-CE uses the voting mechanism of Paxos to confirm the
maximum number of each term.

• log[i] represents the log of the node i. log[i][k] indicates the log entry numbered k in
the log of i. Each log entry is a four-tuples of < t, d, v, b >, where t is the term of a log
entry, which cannot be modified; d is the date, which is used to determine the generation
moment of a log entry; v is the proposal value; b is a Boolean value, which is true when
and only when a log entry is committed.

• syncTrack indicates the sync number of a node in a state of Leader or LeaderCandidate for
recording other nodes. syncTrack[i][a] indicates the sync number of the node a recorded
by the node i.

• elections and halfElections are historical variables, which record the election information.

---------------------------- MODULE ParallelRaft -CE ----------------------------
CONSTANTS Server,Follower ,Candidate ,Leader,LeaderCandidate ,Nil,Value,

RequestVoteRequest ,RequestVoteResponse ,
RequestCommitRequest ,RequestCommitResponse ,
RequestSyncRequest ,RequestSyncResponse ,
UpdateSyncRequest ,UpdateSyncResponse

Quorums=={i\in SUBSET (Server):Cardinality(i)*2>Cardinality(Server)}

VARIABLE messages,currentTerm ,currentState ,votedFor,sync,end,log,syncTrack

serverVars==〈〈currentTerm ,currentState ,votedFor ,sync,end〉〉

VARIABLE halfElections ,elections
electionVars==〈〈halfElections ,elections〉〉

vars==〈〈messages,log,serverVars ,syncTrack ,electionVars〉〉

The major actions of ParallelRaft-CE include the followings:
• UpdateTerm(i): s receives a message m. If m.mterm > currentTerm[i], i upgrades

the term (currentTerm′[i] = m.mterm) and changes into a follower (currentState′[i] =
Follower). The voted record is emptied (votedFor′[i] = Nil) as i has not voted for any
node in the new term yet. In ParallelRaft-CE, a node needs to check the term for any
request it receives. When the term of the message is larger than that of the node, the node
executes UpdateTerm and then responds to the request. When the message has the same
term as the node, the node processes the request directly. When the term of the message
is smaller than that of the node, the node rejects any request and replies to the sender
with its own term.

• RequestVote(i): i initiates the election. Unlike ParallelRaft-SE (Multi-Paxos), i needs to
send its sync number (sync[i]) to other nodes.

• HandleRequestVoteRequest(i): The node i that receives the election request m compares
the terms (currentTerm[i] and m.mterm) and the sync numbers (sync[i] and m.msync).
When m.mterm = currentTerm[i] and sync[i] ≥ m.msync and i has not agreed to the
election request of other nodes in this term, i agrees to the election request and sends the
log entries with a term ofm.msync in its log and the maximum number (end[i][m.msync])
of log entries with a term of m.msync that i can accept to the election initiator.
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UpdateTerm(i)==
/\\E m\in messages:
/\m.mterm>currentTerm[i]
/\\/m.mdest=i
\/m.mdest=Nil

/\currentTerm ’=[currentTerm EXCEPT ![i]=m.mterm]
/\currentState ’=[currentState EXCEPT ![i]=Follower]
/\votedFor ’=[votedFor EXCEPT ![i]=Nil]

/\UNCHANGED 〈〈messages ,sync,log,syncTrack ,electionVars ,end〉〉

RequestVote(i)==
/\currentState[i]=Candidate
/\Send([mtype 7→ RequestVoteRequest ,

mterm 7→ currentTerm[i],
msync 7→ sync[i],
msource 7→ i,
mdest 7→ Nil])

/\UNCHANGED 〈〈serverVars ,syncTrack ,log,electionVars〉〉

HandleRequestVoteRequest(i)==
/\\E m\in messages:
LET j==m.msource

syncOK==/\m.msync\geq sync[i]
grant==/\syncOK

/\votedFor[i]\in {Nil,j}
/\currentTerm[i]=m.mterm

IN
/\m.mterm\leq currentTerm[i]
/\m.mtype=RequestVoteRequest
/\\/grant/\votedFor ’=[votedFor EXCEPT ![i]=j]
\/\neg grant/\UNCHANGED votedFor

/\Send([mtype 7→ RequestVoteResponse ,
mterm 7→ currentTerm[i],
mvoteGranted 7→ grant,
mlog 7→ LET C=={n\in Index:log[i][n].term=sync[i]}

IN {〈〈n,log[i][n]〉〉:n\in C},
mend 7→ end[i][m.msync],
msource 7→ i,
mdest 7→ j])

/\UNCHANGED 〈〈currentTerm ,currentState ,sync,log,syncTrack ,
electionVars ,end〉〉

• BecomeLeaderCandidate(i): If a candidate i receives a message of agreeing to the
election from the node of a majority (voteGranted), i becomes a leader candidate. i

will recover the log entries whose terms are equal to its sync number (sync[i]). Thus, i
should first determine the maximum number of log entries with a term of sync[i] that it
can accept and save it in end[i][sync[i]]. The method is described as herein. i selects the
latest result in the m.mend of the received messages. Then for each acceptable number, i
selects the latest one among the received log entries with the corresponding number and
writes it in the log. For each node p, i initiates syncTrack[i][p] = sync[i].

Merge(entries,term,date)==
IF entries={·} THEN [term 7→ term,

date 7→ date,
value 7→ Nil,
committed 7→ FALSE]

ELSE
LET
committed=={e\in entries:e.committed=TRUE}
chosen==
CASE committed={· } CHOOSE x\in entries:

\A y\in entries:x.date\geq y.date
[·] committed/={· } CHOOSE x\in committed:TRUE

IN
[term 7→ chosen.term,
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date 7→ date,
value 7→ chosen.value,
committed 7→ chosen.committed]

BecomeLeaderCandidate(i)==
/\currentState[i]=Candidate
/\\E P\in Quorums:
LET voteGranted=={m\in messages:/\m.mtype=RequestVoteResponse

/\m.mdest=i
/\m.msource\in P
/\m.mterm=currentTerm[i]
/\m.mvoteGranted=TRUE}

allLog==UNION {m.mlog:m\in voteGranted}
endLine==LET allPoint=={m.mend:m\in voteResponded}

IN e==CHOOSE e1\in allPoint:
(\A e2\in allPoint:e1[1]\geq e2[1])

toRecover=={n\in 0..endLine:log[i][n].committed=FALSE}
toSync=={〈〈n,Merge({l[2]:l\in {t\in allLog:t[1]=n}},sync[i],currentTerm[i])〉〉:
n\in toRecover}
IN
/\\A p\in P:\E m\in voteGranted:m.msource=p
/\log’=[log EXCEPT ![i]=[n\in Index 7→ IF n\in toRecover THEN

(CHOOSE e\in toSync:e[1]=n)[2]
ELSE log[i][n]]]

/\end’=[end EXCEPT ![i][sync[i]]=〈〈currentTerm[i],end〉〉]
/\currentState ’=[currentState EXCEPT ![i]=LeaderCandidate]
/\syncTrack ’=[syncTrack EXCEPT ![i]=[j\in Server 7→ sync[i]]]
/\UNCHANGED 〈〈messages ,currentTerm ,votedFor,sync,elections〉〉

• RequestSync(i): When i is a leader or a leader candidate, i sends log entries with a term
of syncTrack[i][p] to a node p. These log entries can be sent and accepted out of order.

• HandleRequestSyncRequest(i): The node i receives a synchronization request m. When
m.msync < sync[i] or m.msync > sync[i], i rejects the request and replies with the
RequestSyncResponse message, so as to inform the sender of sync[i]. When m.msync =

sync[i], i agrees to the request, replies with an acknowledgement, and modifies end[i] and
log[i] according to m.mend (the maximum number of acceptable log entries with a term
of m.msync) and m.mentries (log entries with a term of m.msync). The modification of
the log is as follows. The log entries with a number greater than m.mend in the log are
deleted, and the log entries with a number not larger than m.mend are replaced with the
corresponding entries in m.mentries.

RequestSync(i)==
/\currentState[i]\in {LeaderCandidate ,Leader}
/\\E s\in 0..sync[i]:
LET start==Min({n\in Index:log[i][n].term=s})

end==Max({n\in Index:log[i][n].term=s})
IN
/\Send([mtype 7→ RequestSyncRequest ,

mterm 7→ currentTerm[i],msync 7→ s,
mstart 7→ start,mend 7→ end,
mentries 7→ IF start=-1 THEN Nil ELSE

[n\in start..end 7→ log[i][n]],
msource 7→ i,mdest 7→ Nil])

/\UNCHANGED 〈〈serverVars ,logVars,electionVars ,syncTrack〉〉

HandleRequestSyncRequest(i)==
/\\E m\in messages:
LET j==m.msource
grant==/\m.mterm=currentTerm[i]

/\m.msync=sync[i]
IN
/\m.mtype=RequestSyncRequest
/\m.mterm\leq currentTerm[i]
/\j/=i
/\\//\grant
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/\log’=[log EXCEPT ![i]=[n\in Index 7→
IF n<m.mstart THEN log[i][n]
ELSE IF n\in m.mstart..m.mend
THEN m.mentries[n]

ELSE [term 7→ -1,date 7→ -1,
value 7→ Nil,committed 7→ FALSE]]]

/\endPoint ’=[endPoint EXCEPT ![i][sync[i]]=〈〈currentTerm[i],m.mend〉〉]
\//\\neg grant
/\UNCHANGED 〈〈log,endPoint〉〉

/\Send([mtype 7→ RequestSyncResponse ,mterm 7→ currentTerm[i],
msyncGranted 7→ grant,msync 7→ sync[i],
mstart 7→ m.mstart,mend 7→ m.mend,
msource 7→ i,mdest 7→ j])

/\UNCHANGED 〈〈currentTerm ,currentState ,sync,votedFor

• HandleRequestSyncResponse(i): i receives a RequestSyncResponse message m from the
node p when i is a leader or a leader candidate. If m is an acknowledge message
(m.msyncGranted = TRUE), and the sync number of p is smaller than that of i

(m.msync < sync[i]), i sends an UpdateSyncRequest request to p to notify p to upgrade to
the next sync number. The next sync number is elected in the same way as described above.
Ifm is a rejection message, then imodifies syncTrack[i][p] (syncTrack′[i][p] = m.msync).

• UpdateSync(i): When i is a leader candidate, if there exists a node majority that
finishes the synchronization for log entries with a term of sync[i], and i receives
their acknowledgements (i.e., the RequestSyncResponse message), then i sends an
UpdateSyncRequest message to these nodes to notify them to upgrade the term with
a sync number of i (currentTerm[i]).

HandleRequestSyncResponse(i)==
/\\E m\in messages:
LET j==m.msource IN
/\m.mtype=RequestSyncResponse
/\m.mdest=i
/\currentTerm[i]=m.mterm
/\currentState[i]\in {Leader,LeaderCandidate}
/\syncTrack ’=[syncTrack EXCEPT ![i][j]=m.msync]
/\\//\m.msyncGranted
/\m.msync<sync[i]
/\Send([mtype 7→ UpdateSyncRequest ,

mterm 7→ currentTerm[i],
msync 7→ Min({sync[i]} \union {k\in Nat:k>m.msync/\

Cardinality({n\in Index:log[i][n].term=k})>0}),
msource 7→ i,
mdest 7→ {j}])

\//\\neg m.msyncGranted
/\UNCHANGED messages

/\UNCHANGED 〈〈serverVars ,log,electionVars〉〉

UpdateSync(i)==
/\currentState[i]=LeaderCandidate
/\\E Q\in Quorums:
LET syncUpdated=={m\in messages:/\m.mtype=RequestSyncResponse

/\m.mterm=currentTerm[i]
/\m.msyncGranted=TRUE
/\m.msync=sync[i]
/\m.msource\in Q
/\m.mdest=i}

IN
/\\A q\in Q:(\E m\in syncUpdated:m.msource=q)\/q=i
/\Send([mtype 7→ UpdateSyncRequest ,

mterm 7→ currentTerm[i],
msync 7→ currentTerm[i],
msource 7→ i,
mdest 7→ Q])

/\UNCHANGED 〈〈serverVars ,log,syncTrack ,electionVars〉〉



Gu XS, et al. Raft with out-of-order executions 495

• HandleUpdateSyncRequest(i): i upgrades its sync number (sync′[i] = m.msync) after
receiving the UpdateSyncRequest request m and marks all the log entries in the log as
committed. Then i replies with acknowledgements to notify the sender of the upgraded
sync number. The leader (or leader candidate) that receives the acknowledgement from
i modifies the record of the sync number of i (syncTrack) according to the reply.

• HandleUpdateSyncResponse(i): After the leader or leader candidate i receives the
UpdateSyncResponse, it updates the record of the sync number of the sender.

HandleUpdateSyncRequest(i)==
\E m\in messages:
LET grant==/\currentTerm[i]=m.mterm

/\m.msync>sync[i]
j==m.msource

IN
/\m.mtype=UpdateSyncRequest
/\i \in m.mdest
/\m.mterm\leq currentTerm[i]
/\\//\grant
/\sync’=[sync EXCEPT ![i]=m.msync]
/\log’=[log EXCEPT ![i]=[n\in Index 7→
IF log[i][n].term=sync[i] THEN
log[i][n].committed=TRUE

ELSE log[i][n]]]
\//\\neg grant
/\UNCHANGED 〈〈log,sync〉〉

/\Send([mtype 7→ UpdateSyncResponse ,mterm 7→ currentTerm[i],
mupdateSyncGranted 7→ grant,msync 7→ sync’[i],
msource 7→ i,mdest 7→ j])

/\UNCHANGED 〈〈currentTerm ,currentState ,votedFor ,end,syncTrack ,electionVars〉〉

HandleUpdateSyncResponse(i)==
/\\E m\in messages:
LET j==m.msource IN
/\m.mtype=UpdateSyncResponse
/\m.mdest=i
/\currentTerm[i]=m.mterm
/\currentState[i]\in {Leader,LeaderCandidate}
/\\//\m.mupdateSyncGranted
/\syncTrack ’=[syncTrack EXCEPT ![i][j]=m.msync]

\//\\neg m.mupdateSyncGranted
/\UNCHANGED syncTrack

/\UNCHANGED 〈〈messages,serverVars ,log,electionVars〉〉

• BecomeLeader(i): After the leader candidate i executes UpdateSync, if the sync
numbers of nodes in a majority Q are upgraded to currentTerm[i] and i receives their
acknowledgements (∀q ∈ Q : syncTrack[i][q] = currentTerm[i]), then i becomes a leader
and commits all log entries in the log.

• ClientRequest(i): When i is a leader, it can respond to user requests and insert them to
the log.

BecomeLeader(i)==
/\currentState[i]=LeaderCandidate
/\\E Q\in Quorums:\A q\in Q:(q=i\/syncTrack[i][q]=currentTerm[i])

/\elections ’=elections\union
{[eterm 7→ currentTerm[i],
esync 7→ sync[i],
eleader 7→ i,
evotes 7→ Q,
evoterLog 7→ {log[k]:k\in Q},
elog 7→ log[i]]}

/\sync’=[sync EXCEPT ![i]=currentTerm[i]]
/\currentState ’=[currentState EXCEPT ![i]=Leader]
/\log’=[log EXCEPT ![i]=[n\in Index 7→

IF log[i][n].term=sync[i] THEN
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log[i][n].committed 7→ TRUE]
ELSE log[i][n]]]

/\UNCHANGED 〈〈messages ,currentTerm ,votedFor,end,syncTrack ,halfElections〉〉

ClientRequest(i,v)==
LET nextIndex==logTail(log[i])+1
entry==[term 7→ currentTerm[i],

date 7→ currentTerm[i],
value 7→ v,
committed 7→ FALSE]

IN
/\currentState[i]=Leader
/\log’=[log EXCEPT ![i][nextIndex]=entry]
/\UNCHANGED 〈〈messages,serverVars ,electionVars ,syncTrack〉〉

Next defines the substate relationship. Spec defines the complete behavior specification.

Next==\/\E i\in Server:Restart(i)
\/\E i\in Server:Timeout(i)
\/\E i\in Server:UpdateTerm(i)
\/\E i\in Server:RequestVote(i)
\/\E i\in Server:HandleRequestVoteRequest(i)
\/\E i\in Server:BecomeLeaderCandidate(i)
\/\E i\in Server:BecomeLeader(i)
\/\E i\in Server,v\in Value:ClientRequest(i,v)
\/\E i,j\in Server:RequestSync(i)
\/\E i\in Server:HandleRequestSyncRequest(i)
\/\E i\in Server:HandleRequestSyncResponse(i)
\/\E i,j\in Server:UpdateSync(i)
\/\E i\in Server:HandleUpdateSyncRequest(i)
\/\E i\in Server:HandleUpdateSyncResponse(i)

Spec==Init/\[·][Next]_vars

5 Proof of Correctness of ParallelRaft-CE
This section briefly demonstrates the correctness of the ParallelRaft-CE protocol. The

correctness of ParallelRaft-CE consists of two parts: the consistency of the consensus protocol
and the absence of the “ghost log entries” phenomenon in ParallelRaft-CE. The security of the
replicated state machines can be obtained: There is no conflict between nodes in the order of
executing each log entry, and the state machines have the consistent state.

Property 1. The term and sync number of a node increase monotonically.
According to the specification, it is easy to find that the term and sync number of a node

are increasing monotonically.
According to the specification, a node will only modify log entries whose terms are equal

to its sync numbers, and will not add, delete, or modify log entries with terms smaller than its
sync number.

Property 2 (Election security). At most one leader is elected in a term.
In ParallelRaft-CE, there are two stages for a follower to become a leader. A follower first

becomes a leader candidate by election, and then the leader candidate becomes a leader. The
leader candidate is selected in the same way as the leader is selected in Raft. According to
the security of leader election in Raft, at most one leader candidate is elected for each term in
ParallelRaft-CE.

A leader candidate may successfully become a leader, or it may not become a leader due to
failure or an election initiated by a node with a larger term. In this case, the system proceeds to
the next term. Therefore, at most one leader is elected in a term.
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Log entries with the same term and the same number must contain the same command.
According to the election security, a leader can obtain any number by adding one log entry at
most. This property is also shown in Raft.

Property 3. Let the term of the leader candidate be t and the sync number be s. Then
s < t and there is no log entry with a term greater than s in the system.

First, the sync number of any node is not greater than its term. Since the node needs to
increase the term (the sync number remains unchanged) when initiating an election and the term
and sync number remain unchanged during the election process, the sync number of the leader
candidate is smaller than its term. Let the sync number of leader candidate i be s and the term
be t (s < t).

For any s < k < t, there is no leader with a term of k. The proof by contradiction is adopted
here. It is assumed that there is a leader j with a term of k. According to the specification, there
is a node majority Q1 voting for i. j becomes a leader from a leader candidate, and thus there is
a node majority Q2 upgrading its sync number to k. According to the property of the majority,
Q1 ∩Q2 ̸= ∅. Let r ∈ Q1 ∩Q2. If r votes for i first, then r upgrades its term to t. As t > k,
r will reject the request of upgrading the sync number of j. This contradicts with r ∈ Q2. If r
upgrades the sync number to k first, then since k > s, r rejects the election request from i (note
that sync numbers are compared in voting for election), which contradicts with r ∈ Q1. Thus,
there is no such k.

For k ≥ t, there is no leader with a term of k. If there exists a leader with a term of k
in the system, then k receives votes from the node majority Q in the election, so the term of
nodes in Q is k at least. Since nodes have an increasing term, the nodes in Q when i initiates an
election either have a term greater than t or have already voted for other nodes with a term of t
and therefore will not vote for i. This contradicts with the fact that i becomes a leader candidate
with a term of t.

In summary, there has not been a leader with a term greater than s in the system. Thus,
there is no log entry with a term greater than s.

Property 4 (Leader completeness). If the term of the leader is t, then its log includes all
log entries with terms smaller than t that have been committed.

In ParallelRaft-CE, when the leader with a term of t1 fails, the new leader candidate (with
a term of t2) reconfirms the log entries with a term of t1. During the reconfirmation process,
the states of all log entries in the previous term are determined: committed or discarded. After
the reconfirmation process, the leader candidate becomes the new leader. The reconfirmation is
essentially to execute the Paxos protocol for each location, so that consensus is guaranteed and
the log entries that consensus has been reached on are not lost. According to the specification,
when reconfirmation is completed, a node majority upgrades the sync number to t2. In addition,
since the sync number of the node increases, nodes with sync numbers smaller than t2 cannot
become a leader candidate through election. Therefore, the log entries with a term of t1 that
consensus has been achieved on will not be changed.

Property 5 (Consistency). For any two nodes, if their sync numbers are both greater than
a term t, their logs contain the same log entries with a term of t.

The leader of ParallelRaft-CE synchronizes the log entries according to the sync number of
the follower. This, together with the correctness of the recovery phase (Property 3 and Property
4), guarantees the log matching property of nodes.

There is no “ghost log entries” phenomenon in ParallelRaft-CE.
In ParallelRaft-CE, the new leader candidate reconfirms the log entries of the previous

leader. After the reconfirmation, the sync number of the leader candidate is upgraded to its
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term. Since the sync number of the node increases, the election mechanism ensures that a node
with a small sync number cannot become a leader. Therefore, the system does not recommit the
log entries of the previous term.

6 Model Checking and Simulation Testing
This section uses the model checker TLC to verify the correctness of the ParallelRaft-CE

protocol in the model checking mode and the simulation mode and to verify the refinement
relationship between ParallelRaft-SE and Multi-Paxos.

6.1 Experimental setup
In all experiments, we resize the participant set Proposer (Server), the proposer set Value,

and the proposal number set Ballot (Term), and set the first two as symmetric sets[13] to improve
the validation efficiency of TLC. We use 10 threads for our experiments, and the experimental
results are shown in the followings.

The statistical results of the model checking mode include the diameter of the traversed
(traversed in the BFS way) system state diagram, the number of traversed states, the number
of discovered different states, and the time spent for checking (in hh:mm:ss). In verifying the
refinement from ParallelRaft-SE to Multi-Paxos, we set the experiment to artificially stop when
the number of different states examined by TLC exceeds 100 million. When verifying that
ParallelRaft-CE satisfies consistency, we set the experiment to artificially stop when the number
of different states examined by TLC exceeds 200 million.

In the simulation mode, we use random seeds and set the maximum depth to 50. The results
are mainly the number of states that have been traversed. Each set of experiments was run for
six hours.

The experiments were performed on a 2.40 GHz 10-core CPU with 64 GB of RAM, and
TLC 1.7.0 is adopted.

6.2 Verification results of model checking

6.2.1 Refinement from ParallelRaft-SE to Multi-Paxos

Table 2 presents the verification results of the refinement from ParallelRaft-SE to Multi-
Paxos in the model checking mode and different configurations.

Table 2 Model checking results of verifying the refinement from ParallelRaft-SE to Multi-Paxos
TLC model (# of states,

# of proposal values,
rounds of voting)

Diameter
of state
diagram

# of states # of different states Checking time
(hh:mm:ss)

(3, 2, 2) 22 1,183,766,512 104,836,664 10:05:25
(3, 2, 3) 23 899,846,293 102,806,000 09:54:49
(3, 3, 2) 22 950,017,774 100,064,549 12:49:10
(3, 3, 3) 22 828,085,252 100,020,363 12:40:07
(4, 2, 2) 24 1,045,345,827 100,093,827 12:52:38
(4, 2, 3) 22 14,830,223,804 100,044,759 09:42:07
(4, 3, 2) 24 1,150,819,236 100,101,884 23:21:09
(4, 3, 3) 21 1,452,458,565 100,054,689 20:04:08

The refinement relationship is given in the TLA+ specification of ParallelRaft-SE.
Experimental data show that the number of participants and the number of proposal values
have a great impact on the experimental scale and the checking time, while the number of voting
rounds has a small impact on the experimental scale.
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6.2.2 ParallelRaft-CE satisfying consistency
Table 3 presents the results of using the model checking mode to verify that ParallelRaft-CE

satisfies consistency in different configurations.

Table 3 Model checking results of verifying that ParallelRaft-CE satisfies consistency
TLC model (# of states,

# of proposal values,
rounds of voting)

Diameter
of state
diagram

# of states # of different states Checking time
(hh:mm:ss)

(2, 2, 2) 26 1,274,709,286 201,161,468 01:51:02
(2, 2, 3) 24 1,104,433,959 202,169,934 01:31:11
(2, 3, 2) 26 1,218,607,009 200,208,445 02:27:13
(2, 3, 3) 24 1,108,870,367 200,916,171 02:22:13
(3, 2, 2) 22 1,370,489,381 200,340,341 03:02:17
(3, 2, 3) 19 1,221,006,004 200,913,649 02:40:23
(3, 3, 2) 22 1,369,865,234 200,265,437 05:44:01
(3, 3, 3) 19 1,236,091,812 200,041,489 05:02:33

The consistency of ParallelRaft-CE is defined formally as follows:

AllEntries(i)=={〈〈n,log[i][n]〉〉:n\in Index}
Consistency==\A i,j\in Server:
{e \in AllEntries(i):e[2].term\geq 0/\e[2].term<Min({sync[i],sync[j]})}=
{e\in AllEntries(j):e[2].term\geq 0/\e[2].term<Min({sync[i],sync[j]})}

In the above, AllEntries(i) indicates all log entries of the node i (two-tuples consisting of
log number and log). Consistency defines the consistency of ParallelRaft-CE. Specifically, if
the sync numbers of any two nodes are both greater than t, then their logs include the same log
entries with a term of t.

The ParallelRaft-CE protocol is more complex and includes many states. Thus, we set the
experiment to stop when the number of different states reaches 200 million.

6.3 Verification results of simulation mode
6.3.1 Refinement from ParallelRaft-SE to Multi-Paxos

Table 4 shows the experimental results of using the simulation mode to verify the refinement
from ParallelRaft-SE to Multi-Paxos under different configurations. After estimation, the
diameter of the state diagram is around 30 on a small experimental scale (three participants
and two rounds of voting). The diameter of the state diagram is about 50 on a large experimental
scale (four participants and three rounds of voting). In the experiment, the detection depth in
the simulation mode is set to 50.

Table 4 Simulation results of the refinement from ParallelRaft-SE to Multi-Paxos
TLC model (# of states, # of

proposal values, rounds of voting) # of states Checking time (hh:mm:ss)

(3, 2, 2) 3,203,570,873 06:00:01
(3, 2, 3) 2,723,736,314 06:00:00
(3, 3, 2) 3,137,465,261 06:00:00
(3, 3, 3) 2,670,655,875 06:00:01
(4, 2, 2) 2,911,602,481 06:00:00
(4, 2, 3) 2,414,873,632 06:00:00
(4, 3, 2) 2,976,053,370 06:00:00
(4, 3, 3) 2,298,047,612 06:00:01
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6.3.2 ParallelRaft-CE satisfying consistency

Table 5 shows the experimental results of using the simulation mode to verify that
ParallelRaft-CE satisfies consistency under different configurations. The maximum depth is
also set to 50 in the experiment.

Table 5 Simulation results of the consistency of ParallelRaft-CE
TLC model (# of states, # of

proposal values, rounds of voting) # of states Checking time (hh:mm:ss)

(2, 2, 2) 4,521,671,984 06:00:17
(2, 2, 3) 4,209,786,847 06:00:20
(2, 3, 2) 4,480,532,710 06:01:05
(2, 3, 3) 4,091,547,805 06:00:12
(3, 2, 2) 3,181,834,406 06:02:14
(3, 2, 3) 2,722,329,411 06:00:10
(3, 3, 2) 3,116,899,023 06:00:45
(3, 3, 3) 2,690,629,148 06:04:19

7 Related Work
The classical distributed consensus protocol Multi-Paxos (Paxos)[8, 9] has derived several

variants[23, 24], such as Disk Paxos[25], Cheap Paxos[26], Fast Paxos[27], Generalized Paxos[28],
Stoppable Paxos[29], Vertical Paxos[30], Byzantine Paxos[31], EPaxos[32], and TPaxos[18]. Multi-
Paxos supports out-of-order commitment and sequential executions of user commands. Raft[10]

can also be seen as a variant of Multi-Paxos (Paxos)[33], which prohibits out-of-order commitment
and simplifies the protocol design by sequential commitment and sequential executions of user
commands. In this paper, we focus on the ParallelRaft protocol[7] used by the distributed file
system PolarFS. Realizing out-of-order commitment and out-of-order executions based on Raft,
it is more suitable for highly concurrent systems. To clarify the relationship between ParallelRaft
and Raft, we propose ParallelRaft-SE. It is a variant of Multi-Paxos that supports out-of-order
commitment and sequential executions of user commands.

The performance of consensus protocols can be improved utilizing the exchangeability
between conflict-free commands. In Generalized Paxos[28], if commands are conflict-free, users
can bypass the leader and broadcast the commands directly to all nodes, reducing communication
overhead and improving performance. Tribble[34], a distributed replication framework proposed
by Microsoft, uses multi-threading techniques to concurrently execute conflict-free commands
while ensuring state consistency. ParallelRaft[7] makes conflict judgments based on the LBAs
of commands, and conflict-free commands can be executed out of order. We analyze the out-
of-order execution mechanism of ParallelRaft and find that it ignores the “ghost log entries”
phenomenon that may violate state consistency according to the description in Reference [7].
Therefore, we propose ParallelRaft-CE, which avoids the “ghost log entries” phenomenon by
limiting the parallelism in the out-of-order commitment phase.

Describing distributed protocols using formal specification languages and verifying
expected properties using model checkers can be effective in increasing confidence in the
reliability of the protocols[18]. Lamport used TLA+[13, 15] to describe protocols such as Paxos[35],
Fast Paxos[27], and Byzantine Paxos[31] and used the model checker TLC to verify the correctness
of these protocols (on a restricted scale). Ongaro et al. proposed a variant of Paxos, Raft, and
gave a TLA+ specification for Raft[22]. In this paper, we provide TLA+ specifications for
ParallelRaft-SE and ParallelRaft-CE and verify their correctness (on a restricted scale).

Refinement techniques[12] help to understand the relationships between various protocols.
In studying Paxos, Lamport proposed Consensus, an abstract description of the consensus
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problem, provided Voting, a centralized solution to the distributed consensus problem[35], and
constructed refinement relationships from Paxos to Voting and from Voting to Consensus[35].
Yi et al. proposed a variant of Voting, EagerVoting, in studying TPaxos of the Tencent’s
PaxosStore system and constructed refinement relationships from TPaxos to EagerVoting and
from EagerVoting to Consensus[18]. In this paper, we construct a refinement relationship from
ParallelRaft-SE to Multi-Paxos and prove the correctness of ParallelRaft-SE.

8 Summary and Future Work

This paper aimed to provide a rigorous formal specification for the ParallelRaft protocol[7]

(which supports out-of-order commitment and out-of-order executions of user commands)
used in the file system PolarFS and prove its correctness. First, to clarify the relationship
between ParallelRaft and Raft, we proposed the ParallRaft-SE protocol that allows out-of-
order commitment and sequential executions and establish a refinement relationship between
ParallelRaft-SE and Multi-Paxos. Second, we found that ParallelRaft ignores the “ghost
log entries” phenomenon that may violate state consistency according to its description and
proposed the ParallelRaft-CE protocol. By limiting the parallelism of ParallelRaft-SE in the
out-of-order commitment phase, ParallelRaft-CE avoids the “ghost log entries” phenomenon.
Finally, we provided TLA+ specifications for ParallelRaft-SE and ParallelRaft-CE and verified
the refinement relationship between ParallelRaft-SE and Multi-Paxos and the correctness of
ParallelRaft-CE using the model checker TLC in the case of a small number of protocol
participants.

Currently, we are using TLA+ proof system (TLAPS)[14, 16] to develop a mechanized
correctness proof method for ParallelRaft-CE (and Raft). In addition, we will make a review
on known distributed consensus protocols in terms of sequential/out-of-order commitment
and sequential/out-of-order executions and study the relationships between them using formal
methods.
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