
Checking Causal Consistency of MongoDB
Hongrong Ouyang

State Key Laboratory for Novel
Software Technology
Nanjing University
Nanjing, China

mf20330056@smail.nju.edu.cn

Hengfeng Wei∗
State Key Laboratory for Novel

Software Technology
Software Institute
Nanjing University
Nanjing, China

hfwei@nju.edu.cn

Yu Huang
State Key Laboratory for Novel

Software Technology
Nanjing University
Nanjing, China

yuhuang@nju.edu.cn

ABSTRACT
MongoDB is one of the first commercial distributed databases that
support causal consistency. Its implementation of causal consis-
tency combines several research ideas for achieving scalability, fault
tolerance, and security. Given its inherent complexity, a natural
question arises: Has MongoDB correctly implemented causal consis-
tency as it claimed?

To address this concern, the Jepsen team has conducted a black-
box testing of MongoDB. However, this Jepsen testing has several
drawbacks in terms of specification, test case generation, imple-
mentation of causal consistency checking algorithms, and testing
scenarios, which undermine the credibility of its reports. In this
work, we have proposed a more thorough design of Jepsen test-
ing of the causal consistency protocol of MongoDB. Specifically,
we have fully implemented the causal consistency checking algo-
rithms proposed by Bouajjani et al. and tested MongoDB under
various scenarios against three well-known variants of causal con-
sistency.

CCS CONCEPTS
• Computer systems organization → Reliability; • Software
and its engineering → Software verification and validation; • In-
formation systems→ Distributed storage.

KEYWORDS
MongoDB, Casual Consistency, Jepsen, Consistency Checking

ACM Reference Format:
Hongrong Ouyang, Hengfeng Wei, and Yu Huang. 2020. Checking Causal
Consistency of MongoDB. In 12th Asia-Pacific Symposium on Internetware
(Internetware’20), May 12–14, 2021, Singapore, Singapore. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3457913.3457928

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Internetware’20, May 12–14, 2021, Singapore, Singapore
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8819-1/20/11…$15.00
https://doi.org/10.1145/3457913.3457928

1 INTRODUCTION
IntroducingMongoDB.MongoDB is a general-purpose, document-
oriented distributedNoSQL database [4]. AMongoDB database con-
sists of a set of collections, a collection is a set of documents, and a
document is an ordered set of keys with associated values [30]. 1
MongoDB achieves scalability by partitioning data into shards and
fault-tolerance by replicating each shard across a set of nodes [32].
Themost general MongoDB deployment is a sharded cluster, where
each shard is a replica set consisting of a primary node and several
secondary nodes; see Figure 1. Client operations are routed to cor-
responding shards via routers, which have access to config servers
that are deployed as a replica set to store metadata for deployment.
In a replica set, only the primary can accept writes from clients
(via drivers), and it will record the writes in its oplog. Secondaries
can accept reads, and they will replicate the primary’s oplog by
periodically pulling it from the primary.

Causal Consistency in MongoDB. According to the PACELC
theorem [6], an extension to the CAP theorem [13, 18], if there is a
network partition (P), a distributed system must trade off availabil-
ity (A) and consistency (C); else (E), it must trade off latency (L)
and consistency (C). For high availability and low latency, Mon-
goDB offers relaxed consistency models. Particularly, in version
3.6 released inNovember 2017,MongoDB introduced causal consis-
tency [31, 32]. It provides clients with session guarantees including
read-your-writes, monotonic-reads, monotonic-writes, and writes-
follow-reads [1, 14]. As the Jepsen team [2] denoted, MongoDB is
one of the first commercial databases that implement causal con-
sistency [28, 32].

The Official Jepsen Testing of Causal Consistency of Mon-
goDB. Being a production database, MongoDB’s implementation
of causal consistency requires a multi-dimensional evaluation cri-
teria on performance, scalability, and security [32]. It combines
several research ideas, including hybrid logical clocks [22], explicit
dependency tracking [8, 16], Raft-based replication consensus pro-
tocol [27], and signature-verification mechanism. Given its inher-
ent complexity, a natural question arises: Has MongoDB correctly
implemented causal consistency as it claimed in docs? To address
this concern, the Jepsen team has conducted a black-box testing
against MongoDB 3.6.4 and 4.0.0-rc1 [28]. They designed test cases
that characterized client operations, ran test cases in various sce-
narios, collected histories of executions generated by MongoDB,
and utilized an adapted version of the causal consistency checking

1Roughly speaking, a document is an analog to a row in a relational database, and a
collection is to a table.

https://doi.org/10.1145/3457913.3457928
https://doi.org/10.1145/3457913.3457928

Internetware’20, May 12–14, 2021, Singapore, Singapore Hongrong Ouyang, Hengfeng Wei, and Yu Huang

2 or more Shards

Config
Servers

Figure 1: MongoDB Deployment as a Sharded Cluster.

algorithm proposed by Bouajjani et al. [12] to check whether these
histories satisfy causal consistency.

Drawbacks of the Official Jepsen Testing. However, the offi-
cial Jepsen testing has several drawbacks in terms of specification,
test case generation, implementation of causal consistency check-
ing algorithms, and testing scenarios, which undermine the credi-
bility of its reports. Specifically,

• There are several variants of causal consistency, including
Causal Consistency (CC) [15, 29], Causal Memory (CM) [7],
and Causal Convergence (CCv) [29]. Not all of them are
comparable [29]. However, the official Jepsen testing did not
clearly specify the causal consistency variant against which
it tested the MongoDB database.

• In terms of test cases, the official Jepsen testing used inde-
pendent keys. That is, each session accesses only a single
key and different sessions access different keys. Concretely,
each session performs a sequence of five operations on its
key: an initial read, a write of 1, a read, a write of 2, and
a final read. However, causal consistency is not composi-
tional [26], i.e., the composition of a set of keys satisfying
causal consistency may be not causally consistent.Thus, the
test cases are too restrictive for causal consistency checking.

• Given the specific test cases above, the official Jepsen test-
ing hard-wired the expected return value of each read oper-
ation in its causal consistency checking algorithm. In other
words, it has not fully implemented the causal consistency
checking algorithms in [12].

• Although the official Jepsen testing has tested the causal
consistency of MongoDB under network partitions, it did
not cover the scenarios such as node failures and data move-
ment among shards.

Our Contributions. In this work, we propose a more thorough
design of Jepsen testing of the causal consistency protocol of Mon-
goDB. 2 Specifically,

2The project can be found at https://github.com/Tsunaou/Checking-Causal-
Consistency-of-MongoDB.

• We considered three well-known variants of causal consis-
tency, following the formal specification given in [12].

• Wegenerated themost general operation sequences for clients,
without any restrictions on keys.

• We fully implemented the “bad patterns”-based causal con-
sistency checking algorithm proposed by Bouajjani et al.;

• We designed more testing scenarios, covering network par-
titions, node failures, and data movement among shards.

The preliminary experimental results confirmed the claim in
MongoDB’s documentation [1] that in the presence of node fail-
ures or network partitions, causal consistency is guaranteed only
for reads with “majority” readConcern (explained shortly in Sec-
tion 2.1) and writes with “majority” writeConcern.

The rest of the paper is organized as follows. Section 2 provides
preliminaries on causal consistency and the Jepsen testing frame-
work. Section 3 describes the official Jepsen testing of causal con-
sistency of MongoDB and introduces our more thorough design.
Section 4 demonstrates our experiments and results. Section 5 dis-
cusses related work. Section 6 concludes the paper.

2 PRELIMINARIES
2.1 Causal Consistency in MongoDB
MongoDB enables causal consistency in client sessions. Moreover,
MongoDB’s causal consistency can be combined with tunable con-
sistency, which allows clients to select the trade-offs between con-
sistency and latency, at a per operation level [30]. writeConcern
specifies the number of replica set members that must acknowl-
edge thewrite before returning to a client. In particular, w : ``majority''
requires a write operation to be acknowledged by a majority of the
replica setmembers before being returned to the client. readConcern
determines what consistency guarantees data returned to a client
must satisfy.The default value of readConcern is level : ``local'',
which allows to return the local data in a single replica set mem-
ber. In contrast, level : ``majority'' guarantees that the re-
turned data has been written to a majority of the replica set mem-
bers. As claimed inMongoDB’s documentation [1], in the presence
of node failure or network partitions, causally consistent sessions
can only guarantee causal consistency for reads with “majority”
readConcern and writes with “majority” writeConcern. In a good
condition, however, write operations with w : 1 writeConcern
can also provide causal consistency.

2.2 Causal Consistency: Formal Specification
We review the formal specification of causal consistency with re-
spect to read-write registers, following [12].

2.2.1 Replicated Objects. We focus on read/write registers from X,
ranged over by𝑥,𝑦, etc.They support a set ofmethodsM = {wr, rd}
for writing to or reading from a register (i.e., variable), with input
or output values from a domain V.

2.2.2 Histories. We model the interactions between clients and a
distributed database maintaining replicated read/write registers by
histories. A history ℎ = (𝑂, PO, ℓ) is the poset (partial-ordered set)
(𝑂, PO) labeled byM × V × V, where

https://github.com/Tsunaou/Checking-Causal-Consistency-of-MongoDB
https://github.com/Tsunaou/Checking-Causal-Consistency-of-MongoDB

Checking Causal Consistency of MongoDB Internetware’20, May 12–14, 2021, Singapore, Singapore

Program Order Read From Causal Order Conflict Relation

wr(x, 1) wr(y, 1)p0

p1

p2

rd(y) ▷ 1 wr(x, 2)

rd(x) ▷ 2 rd(x) ▷ 1

Figure 2: A history ℎ that is not CCv. (The arrows for CO that
are implied by transitivity are not shown.)

• 𝑂 is set of operation identifiers, or simply operations. We
use 𝑅 and𝑊 to denote the set of read and write operations,
respectively.

• PO is a union of total orders among operations called pro-
gram order. For 𝑜1, 𝑜2 ∈ 𝑂 , 𝑜1 <PO 𝑜2 means that 𝑜1 and 𝑜2
were issued by the same client and 𝑜1 occurred before 𝑜2.

• For an operation 𝑜 ∈ 𝑂 , its label ℓ (𝑜) = (𝑚,𝑎𝑟𝑔, 𝑟𝑣) ∈
M × V × V indicates that 𝑜 is an invocation of method 𝑚
with input argument 𝑎𝑟𝑔, returning value 𝑟𝑣 . We sometimes
denote ℓ (𝑜) by𝑚(𝑎𝑟𝑔) ⊲ 𝑟𝑣 .

We usewr(𝑥, 𝑣)⊲⊥ (or simplywr(𝑥, 𝑣)) to denote awrite of value
𝑣 ∈ V to register 𝑥 ∈ X returning ⊥ ∉ V, and rd(𝑥) ⊲ 𝑣 a read of 𝑥
returning 𝑣 . In addition, for an operation 𝑜 with ℓ (𝑜) = wr(𝑥, 𝑣) or
ℓ (𝑜) = rd(𝑥) ⊲ 𝑣 , we define var(𝑜) = 𝑥 and val(𝑜) = 𝑣 .

2.2.3 Sequential Semantics. Theconsistency of replicated read-write
registers is defined with respect to its sequential semantics. Intu-
itively, in any operation sequence on read-write registers, a rd op-
eration returns the value of the latest preceding wr on the same
register, or the initial value 0 if there are no such prior writes. For-
mally, the sequential semantics 𝑆RW of read-write registers is the
smallest set of sequences labeled byM × V × V satisfying

• 𝜖 ∈ 𝑆RW, where 𝜖 is the empty sequence;
• if 𝜌 ∈ 𝑆RW, then 𝜌 · wr(𝑥, 𝑣) ∈ 𝑆RW;
• if 𝜌 ∈ 𝑆RW contains no writes on 𝑥 , then 𝜌 · rd(𝑥) ⊲ 0 ∈ 𝑆RW;
• if 𝜌 ∈ 𝑆RW and the last write in 𝜌 on register 𝑥 is wr(𝑥, 𝑣),
then 𝜌 · rd(𝑥) ⊲ 𝑣 ∈ 𝑆RW.

2.2.4 Causal Consistency. Causal consistency guarantees that all
clients agree on the relative ordering of causally related opera-
tions [7, 23]. However, operations that are not causally related may
be observed in different orders by different clients. In this paper,
we take causal convergence (CCv) as an example. 3 Besides the
causal order, CCv ensures eventual convergence captured by a to-
tal arbitration order.

Definition 2.1 (Causal Convergence). A history ℎ = (𝑂, PO, ℓ) is
CCv with respect to specification 𝑆RW if there exists a strict partial
order 𝑐𝑜 ⊆ 𝑂 × 𝑂 called the causal order and a strict total order
𝑎𝑟𝑏 ⊆ 𝑂×𝑂 called the arbitration order such that for each operation
𝑜 ∈ 𝑂 , there exists a specification sequence 𝜌𝑜 ∈ 𝑆RW such that the

3The interested readers are referred to [12] for the formal definitions and checking
algorithms for CC and CM.

Table 1: Definitions of Bad Patterns

Bad Patterns Description
CyclicCO PO ∪ RF is cyclic.

ThinAirRead ∃𝑟 ∈ 𝑅. val(𝑟) ≠ 0 ∧ (�𝑤 ∈𝑊 . 𝑤 <RF 𝑟)
WriteCOInitRead ∃𝑟 ∈ 𝑅,𝑤 ∈𝑊 . 𝑤 <CO 𝑟

∧ var(𝑤) = var(𝑟) ∧ val(𝑟) = 0
WriteCORead ∃𝑤1,𝑤2 ∈𝑊, 𝑟1 ∈ 𝑅. var(𝑤1) = var(𝑤2)

∧𝑤1 <CO 𝑤2 <CO 𝑟1 ∧𝑤1 <RF 𝑟1
CycliCF CF ∪ CO is cyclic.

following conditions hold:

AxCausal ≜ PO ⊆ 𝑐𝑜,

AxArb ≜ 𝑐𝑜 ⊆ 𝑎𝑟𝑏,

AxCausalArb ≜ (𝑐𝑜−1 (𝑜), 𝑎𝑟𝑏, ℓ){𝑜} � 𝜌𝑜 .

Here 𝑐𝑜−1 (𝑜) is the set of operations that precede 𝑜 in causal
order. Formally, 𝑐𝑜−1 (𝑜) = {𝑜 ′ | 𝑜 ′ <𝑐𝑜 𝑜}.

Let 𝜌 = (𝑂, <, ℓ) be aM × V × V labeled poset and 𝑜 ∈ 𝑂 be an
operation. 𝜌{𝑜} is the labeled poset in which only the return value
of 𝑜 is kept. Formally, 𝜌{𝑜} is the (M × V) ∪ (M × V × V) labeled
poset (𝑂, <, ℓ ′) where ℓ ′(𝑜) = ℓ (𝑜) and for all 𝑜 ′ ∈ 𝑂 and 𝑜 ′ ≠ 𝑜 ,
ℓ ′(𝑜 ′) = (𝑚,𝑎𝑟𝑔) if ℓ (𝑜 ′) = (𝑚,𝑎𝑟𝑔, 𝑟𝑣).

Let 𝜌 = (𝑂, <, ℓ) and 𝜌 ′ = (𝑂, <′, ℓ ′) be two (M×V)∪(M×V×V)
labeled posets. 𝜌 ′ � 𝜌𝑜 means that 𝜌 ′ has less order and label
constraints on set 𝑂 . Formally, 𝜌 ′ � 𝜌 if <′⊆< and for all 𝑜 ∈ 𝑂
and all𝑚 ∈ M, 𝑎𝑟𝑔 ∈ V, 𝑟𝑣 ∈ V, ℓ ′(𝑜) = ℓ (𝑜) or ℓ ′(𝑜) = (𝑚,𝑎𝑟𝑔) if
ℓ (𝑜) = (𝑚,𝑎𝑟𝑔, 𝑟𝑣).

2.3 Causal Consistency Checking
The general decision problem of checking whether a history over
read-write registers is causally consistent is NP-complete [12]. How-
ever, for differentiated histories in which the values written to the
same register are distinct, it is polynomial time [12]. Differenti-
ated histories can be achieved by attaching unique timestamps to
writes in implementation. We consider only differentiated histo-
ries below.

The polynomial-time checking algorithms proposed by Bouaj-
jani et al. are based on the notion of “bad patterns”. Each causal
consistency variant can be precisely characterized by lacking of a
set of certain bad patterns. The bad patterns are expressed in terms
of program order PO, read-from relation RF, causal order CO, con-
flict relation CF, and happened-before relation (HB) 4 on operations.

Definition 2.2. The read-from relation RF ⊆ 𝑊 × 𝑅 associates a
read with the write from which it obtains the value. Formally,

∀𝑤 ∈𝑊, 𝑟 ∈ 𝑅. (𝑤, 𝑟) ∈ RF ⇐⇒ var(𝑤) = var(𝑟)∧val(𝑤) = val(𝑟).

Definition 2.3. The casual order CO ⊆ 𝑂×𝑂 is defined as the tran-
sitive closure of program order and read-from relation. Formally,

CO = (PO ∪ RF)+ .

4HB is used by CM. We omit it in this paper.

Internetware’20, May 12–14, 2021, Singapore, Singapore Hongrong Ouyang, Hengfeng Wei, and Yu Huang

Table 2: Comparison between the Official Jepsen Testing and Our Design

The Official Jepsen Testing Our Design of Jepsen Testing

Specification unspecified three well-known variants: CC, CM, and CCv

Test Case Generation restricted on keys and operation sequences general for differentiated histories
Checking Algorithms ad hoc for restricted test cases full implementation of [12]
Testing Scenarios network partition network partition, data movement, node failure

Table 3: Hardware Configurations

Component Configuration
Control Node Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz; 16GB; Ubuntu 20.04
Database Node Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz; 4GB; Ubuntu 16.04
Checker Server Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz; 32GB ; Ubuntu 16.04

Definition 2.4. The conflict relation CF ⊆ 𝑊 ×𝑊 orders two
writes on the same register according to a third read operation.
Formally,

∀𝑤,𝑤 ′ ∈𝑊 . (𝑤,𝑤 ′) ∈ CF ⇐⇒
∃𝑟 ′ ∈ 𝑅. (𝑤 ′, 𝑟 ′) ∈ RF ∧ var(𝑤) = var(𝑟 ′) ∧ (𝑤, 𝑟 ′) ∈ CO.

Example 2.5. Consider the historyℎ of Figure 2. Sincewr(𝑥, 2) <RF

rd(𝑥) ⊲2 and rd(𝑥) ⊲2 <PO rd(𝑥) ⊲1, we havewr(𝑥, 2) <CO rd(𝑥) ⊲1.
In addition, wr(𝑥, 1) <RF rd(𝑥) ⊲ 1. Thus, wr(𝑥, 2) <CF wr(𝑥, 1).

The following theorem characterizes CCv in terms of bad pat-
terns defined in Table 1.

TheoRem 2.6. A history ℎ is CCv if and only if ℎ does not ex-
hibit any bad patterns of CyclicCO, WriteCOInitRead, ThinAirRead,
WriteCORead, or CyclicHF.

Example 2.7. Consider the history ℎ of Figure 2. It is not CCv.
First, since wr(𝑥, 1) <CO< wr(𝑥, 2) <CO rd(𝑥) ⊲ 1 and wr(𝑥, 1) <RF

rd(𝑥)⊲1, it exhibits the bad patternWriteCORead. In addition, there
is a cycle in CF: wr(𝑥, 1) <CF wr(𝑥, 2) <CF wr(𝑥, 1). Thus, it also
exhibits the bad pattern CyclicCF.

2.4 Jepsen
Jepsen is a library for black-box testing of distributed systems [2].
A typical Jepsen testing of a distributed database consists of a de-
ployment of the database and a control node. The control node
starts several worker processes called clients. A generator is respon-
sible for continuously generating operations and dispatching them
to clients, according to user-defined rules. Clients interact with the
database by issuing operations.The invocations and responses pro-
duced are recorded in a history. When the test finishes, the history
is checked by a checker against a desired consistency model.

To test the fault-tolerant capability of the database, special worker
processes called nemesis continuously inject faults or rare events
(such as data movement among shards) into the database deploy-
ment.

3 JEPSEN TESTING OF CAUSAL
CONSISTENCY OF MONGODB

In this section we first describe the official Jepsen testing of causal
consistency of MongoDB 3.6.4 and 4.0.0-rc1 [28], from the per-
spectives of specification, test case generation, implementation of
causal consistency checking algorithms, and testing scenarios. To
overcome its drawbacks identified in Section 1, we then design a
more thorough Jepsen testing of causal consistency of MongoDB.

3.1 The Official Jepsen Testing
TheMongoDB deployment under test consists of two shards, each
of which is a replica set of 5 nodes.

3.1.1 Specification. The Jepsen team claimed that they have tested
MongoDB against causal consistency. However, they did not clearly
specify the variant of causal consistency.

3.1.2 Test Case Generation. Treating a MongoDB collection as a
set of read-write registers, the generator generates read and write
operations for clients.The dispatch rule ensures that each client ac-
cesses only a single register and different clients access different
registers. Specifically, the operation sequence of each client con-
sists of 5 operations as follows

〈𝑟,𝑤1, 𝑟 ,𝑤2, 𝑟 〉,

where 𝑟 denotes a read of the register that belongs to the client,𝑤1
a write of value 1 to the register, and 𝑤2 a write of value 2 to the
register.

3.1.3 Checking Algorithms. Since the test cases are quite restric-
tive, it suffices for the checker to verify whether the three reads of
each client return 0, 1, and 2 in order.

3.1.4 Testing Scenarios. The official Jepsen testing has designed a
kind of nemesis called partition-random-halves to trigger network
partitions randomly. Specifically, in the 5-node deployment ofMon-
goDB, the network will be split into two disconnected parts: one
(denoted 𝑃1) consists of 2 nodes, one of which is the original pri-
mary node, and the other (denoted 𝑃2) consists of 3 nodes. Since 3
nodes in 𝑃2 constitute a majority (of 5 nodes), one of them will be

Checking Causal Consistency of MongoDB Internetware’20, May 12–14, 2021, Singapore, Singapore

Table 4: Experimental Results of Causal Consistency Checking of MongoDB (3: satisfaction; 7: violation; ⊗: unexpected Thi-
nAirRead bad patterns discussed in Section 4.3.)

of Operations
With Nemesis Without Nemesis

(majority, majority) (w1, local) (majority, majority) (w1, local)
CC CM CCv CC CM CCv CC CM CCv CC CM CCv

100 3 3 3 3 3 3 3 3 3 3 3 3

200 3 3 3 3 3 3 3 3 3 3 3 3

300 3 3 3 3 3 3 3 3 3 3 3 3

400 3 3 3 3 3 3 3 3 3 3 3 3

500 3 3 3 3 3 3 3 3 3 3 3 3

600 3 3 3 3 3 3 3 3 3 3 3 3

700 3 3 3 7 7 7 3 3 3 3 3 3

800 3 3 3 3 3 3 3 3 3 3 3 3

900 3 3 3 7 7 7 3 3 3 3 3 3

1000 3 3 3 3 3 3 3 3 3 3 3 3

1100 3 3 3 7 7 7 3 3 3 3 3 3

1200 3 3 3 7 7 7 3 3 3 3 3 3

1300 ⊗ ⊗ ⊗ 3 3 3 3 3 3 3 3 3

1400 3 3 3 3 3 3 3 3 3 3 3 3

1500 3 3 3 3 3 3 3 3 3 3 3 3

1600 3 3 3 7 7 7 3 3 3 3 3 3

1700 3 3 3 7 7 7 3 3 3 3 3 3

1800 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

1900 3 3 3 7 7 7 3 3 3 3 3 3

2000 3 3 3 3 3 3 3 3 3 3 3 3

2500 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

3000 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

3500 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

4000 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

4500 ⊗ ⊗ ⊗ 7 7 7 3 3 3 3 3 3

5000 3 3 3 7 7 7 3 3 3 3 3 3

elected as a new primary. Consequently, there would temporarily
be two nodes that consider themselves as the primary of the cluster.

After the network recovers, thewrites performed on the original
primary node during network partition will be rolled back. The
Jepsen testing revealed that in the presence of network partitions,
causally consistent sessions can only guarantee causal consistency
for reads with “majority” readConcern and writes with “majority”
writeConcern.

3.2 Our Design of Jepsen Testing
As shown in Table 2, we have improved the official Jepsen testing
in the following aspects.

3.2.1 Specification. We test MongoDB against three well-known
variants of casual consistency, namely, CC, CM, and CCv. Specifi-
cally, we adopt the formal specification given in [12].

3.2.2 Test Case Generation. In our design, the generator generates
an arbitrary differentiated operation sequence for each client using

YCSB [5]. Particularly, we impose no restrictions on keys as the of-
ficial Jepsen testing does, only controlling the range and distribu-
tion of generated keys, and the ratio of read and write operations.

The generated keys follow a uniform distribution. To ensure that
all writes on the same register write unique values, the generator
attaches values 1, 2, . . . to them in order. We record necessary in-
formation about each operation during generation and execution,
including its type (i.e., read or write), the value it reads or writes,
the client that issues the operation, and the index indicating the
order in which the operation is generated.

3.2.3 Checking Algorithms. To check an arbitrary differentiated
history against several variants of causal consistency, we fully im-
plement the “bad patterns”-based causal consistency checking al-
gorithms for CC, CM, and CCv [12].

3.2.4 Testing Scenarios. Besides partition-random-halves in the of-
ficial Jepsen testing, we introduce two additional nemesis called
node-failure and data-mover. The node-failure nemesis randomly
selects a database node, suspends it for a while, and then recover

Internetware’20, May 12–14, 2021, Singapore, Singapore Hongrong Ouyang, Hengfeng Wei, and Yu Huang

0 1,000 2,000 3,000 4,000 5,000

0

1

2

3

4

5

Number of operations

T
o
t
a
l
T
im

e
(S

e
c
o
n
d
s)

Time for CC Checking with Nemesis

(majority, majority)

(w1, local)

0 1,000 2,000 3,000 4,000 5,000

0

2

4

6

Number of operations

T
o
t
a
l
T
im

e
(S

e
c
o
n
d
s)

Time for CCv Checking with Nemesis

(majority, majority)

(w1, lccal)

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

·105

Number of operations

T
o
t
a
l
T
im

e
(S

e
c
o
n
d
s)

Time for CM Checking with Nemesis

(majority, majority)

(w1, local)

(a) Time for Causal Consistency Checking with Nemesis

0 1,000 2,000 3,000 4,000 5,000

0

2

4

6

8

10

Number of operations

T
o
t
a
l
T
im

e
(S

e
c
o
n
d
s)

Time for CC Checking without Nemesis

(majority, majority)

(w1, local)

0 1,000 2,000 3,000 4,000 5,000

0

5

10

15

Number of operations

T
o
t
a
l
T
im

e
(S

e
c
o
n
d
s)

Time for CCv Checking without Nemesis

(majority, majority)

(w1, local)

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

·105

Number of operations
T
o
t
a
l
T
im

e
(S

e
c
o
n
d
s)

Time for CM Checking without Nemesis

(majority, majority)

(w1, local)

(b) Time for Causal Consistency Checking without Nemesis

Figure 3: Time of Checking Whether Histories Satisfy Causal Consistency.

it.Thismay trigger leader election.The data-mover nemesis period-
ically moves data among shards. In an execution, partition-random-
halves, node-failure, and data-mover are generated and scheduled
by the generator, according to user-defined rules.

4 PRELIMINARY EVALUATIONS
Wehave implemented the checking algorithms of [12] and checked
histories produced by MongoDB 4.2.3 against CC, CM, and CCv.
We use the Jepsen testing framework of version 0.1.17. Table 3
shows the hardware configurations of the control node, the data-
base nodes, and the checker server.

4.1 Experimental Setup
We adopt the same MongoDB deployment as that in the official
Jepsen testing: it consists of two shards, each of which is a replica
set of 5 nodes.

In each experiment, we fix 100 registers and 10 clients. The gen-
erator generates read or write operations and appends them into a
queue. For each register, the ratio between the number of read op-
erations and that of write operations is 3 : 1. Each client creates a
causally consistent session, extracts operations from the operation
queue, and issues them to MongoDB servers.

For each experiment, we tune the total number of operations
and the readConcern and writeConcern levels for operations. To
handle possible exceptions thrown by MongoDB during write op-
erations, we restart a new causally consistent session in the corre-
sponding client. Moreover, we cover both the scenarios with and
without nemesis. For each history produced byMongoDB,we check
whether it satisfies CC, CM, and CCv.

4.2 Experimental Results
Table 4 shows the experimental results of checking causal consis-
tency of MongoDB.

4.2.1 Causal Consistency Checking. The preliminary experimen-
tal results have confirmed the claim in MongoDB’s documenta-
tion [1] that in the presence of nemesis (such as partition-random-
halves, node-failure, and data-mover), causally consistent sessions
guarantee causal consistency only for readswith “majority” readConcern
and writes with “majority” writeConcern. In contrast, in the pres-
ence of nemesis, the histories with “local” readConcern and “w1”
writeConcern may violate any of three causal consistency vari-
ants. On the other hand, without nemesis, MongoDB can provide
all three variants of causal consistency evenwith “local” readConcern
and “w1” writeConcern.

Checking Causal Consistency of MongoDB Internetware’20, May 12–14, 2021, Singapore, Singapore

Table 5: Snippet of a History that Exhibits an Unexpected
ThinAirRead Bad Pattern

No. Operation Exception readConcern
1128 wr(85, 5) MongoWriteException majority
1129 wr(20, 5) MongoWriteException majority
1149 rd(20) ⊲ 5 majority
1266 rd(85) ⊲ 5 majority
1336 rd(20) ⊲ 5 majority
3756 rd(20) ⊲ 5 majority

4.2.2 Performance. Figure 3 demonstrates the performance of check-
ing whether histories satisfy causal consistency. According to [12],
it takes 𝑂 (𝑛3) to check a differentiated history with 𝑛 operations
against CC or CCv. In contrast, it takes 𝑂 (𝑛5) against CM. The
experimental results in Figure 3 have exhibited such a substantial
performance gap.

4.3 Unexpected ThinAirRead Bad Patterns
We have observed some unexpected ThinAirRead bad patterns in
our preliminary evaluations, marked ⊗ in Table 4. They appear
in some histories that are produced without nemesis and consist
of reads with “majority” readConcern and writes with “majority”
writeConcern. Table 5 shows a snippet of such a history. Note that
the write operation wr(85, 5) of No. 1128 incurs a runtime excep-
tion called com.mongodb.MongoWriteException. Since the causal
consistency checking algorithms in [12] implicitly assume that all
write operations are successful, this write operation is considered
failed and discarded from the history. However, a later read opera-
tion rd(85) of No. 1266 obtains the value 5 from key 85, indicating
that the write operation wr(85, 5) has actually written its value to
the database. This gives rise to a ThinAirRead bad pattern during
checking.

We remark that the unexpectedThinAirRead bad patterns above
do not necessarily imply bugs in the causal consistency protocols
of MongoDB. However, to better explain such unexpected results,
it needs to design checking algorithms for histories which may
contain failed write operations.

5 RELATEDWORK
The Jepsen Testing ofMongoDB.The Jepsen team has testedMon-
goDB concerning its consistency models several times in recent
years.

• In 2013, they tested the election and data replication pro-
tocol of MongoDB 2.4.3 [9]. It showed that acknowledged
writes may be lost under network partitions at all consis-
tency levels.

• In 2015, they tested the single-document consistency ofMon-
goDB 2.6.7 [10]. It showed that “strictly consistent” reads
may see stale versions of documents, and worse still they
may return garbage data that has never been written before.

• In 2017, they tested the v0 and v1 replication protocols of
MongoDB 3.4.0-rc3 [20]. It showed that the v0 replication
protocol may lose the majority-committed documents. The

new v1 replication protocol also contained bugs, allowing
data loss in all versions up to MongoDB 3.2.11 and 3.4.0-rc4.

• In 2018, they tested the causal consistency protocol of Mon-
goDB 3.6.4 [28]. It showed that in the presence of node fail-
ures or network partitions, causal consistency is guaranteed
only for readswith “majority” readConcern andwriteswith
“majority” writeConcern. In this paper, we have identified
several drawbacks of this testing in terms of specification,
test case generation, implementation of causal consistency
checking algorithms, and testing scenarios. We have also
proposed a more thorough design of Jepsen testing of the
causal consistency protocol of MongoDB.

• In 2020, they tested the transactional consistency models
of MongoDB 4.2.6 [21]. It showed that MongoDB failed to
preserve snapshot isolation, even for reads with “majority”
readConcern and writes with “majority” writeConcern.

The Consistency Checking Problem.Much work has been de-
voted to the problem of checking whether a given history satis-
fies a desirable consistency model. Gibbons et al. [17] have system-
atically studied the complexity of the checking problem against
strong consistency models, including linearizability [19] and se-
quential consistency [11]. Regardingweak consistencymodels,Wei
et al. [33] have addressed the problem of checking PRAM consis-
tency [25] over histories of read/write registers. They first proved
that for non-differentiated histories, the decision problem is NP-
complete, and then proposed a polynomial-time checking algorithm
for differentiated histories. Recently, Bouajjani et al. have addressed
the problem of checking causal consistency [12]. They considered
three well-known variants of causal consistency, namely CC, CM,
and CCv. They proved that checking whether a general history of
arbitrary replicated objects satisfies CC, CM, or CCv is NP-hard,
and that it is NP-complete for histories of read/write registers.More-
over, they proposed polynomial-time algorithms for differentiated
histories of read/write registers. In this paper, we have fully imple-
mented these efficient checking algorithms and utilized them to
test the causal consistency protocol of MongoDB.

6 CONCLUSION AND FUTUREWORK
Wehave proposed a thorough design of Jepsen testing of the causal
consistency protocol of MongoDB. It has strengthened the official
Jepsen testing in 2018 [28] in terms of specification, test case gener-
ation, implementation of causal consistency checking algorithms,
and testing scenarios.We have conducted a preliminary evaluation
of our design and more intensive experiments are needed.

In the future, we plan to improve the official Jepsen testing of the
transaction protocols of MongoDB 4.2.6 [21]. On the other hand,
we are also interested in applying formal methods to MongoDB’s
protocols. Specifically, we will formally specify these protocols in
TLA+ (Temporal Logic of Action) [24], verify them using the TLC
model checker [34], and developmechanical correctness proofs for
them using TLAPS (TLA Proof System) [3].

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China under Grant No. 61702253 and No. 61772258.

Internetware’20, May 12–14, 2021, Singapore, Singapore Hongrong Ouyang, Hengfeng Wei, and Yu Huang

REFERENCES
[1] [n.d.]. Causal Consistency and Read and Write Concerns. https://docs.mongodb.

com/manual/core/causal-consistency-read-write-concerns/
[2] [n.d.]. Jepsen. https://github.com/jepsen-io/jepsen
[3] [n.d.]. Microsoft Research – Inria Joint Centre: TLA+ Proof System (TLAPS).

https://tla.msr-inria.inria.fr/tlaps/content/Home.html. [Accessed: Jan. 21, 2019].
[4] [n.d.]. MongoDB. https://www.mongodb.com/
[5] [n.d.]. YCSB. https://github.com/brianfrankcooper/YCSB
[6] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database Sys-

tem Design: CAP is Only Part of the Story. IEEE Computer 45, 2 (2012), 37–42.
https://doi.org/10.1109/MC.2012.33

[7] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. 1995. Causal memory: definitions, implementation, and programming.
Distributed Computing 9, 1 (1995), 37–49.

[8] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. [n.d.]. Cure:
Strong semantics meets high availability and low latency. In Proceedings of the
36th International Conference on Distributed Computing Systems (ICDCS’2016).
405–414.

[9] Aphyr. 2013. Jepsen: MongoDB. https://aphyr.com/posts/284-call-me-maybe-
mongodb

[10] Aphyr. 2015. Jepsen: MongoDB stale reads. https://aphyr.com/posts/322-jepsen-
mongodb-stale-reads

[11] Hagit Attiya and Jennifer L. Welch. 1994. Sequential Consistency versus Lin-
earizability. ACM Trans. Comput. Syst. 12, 2 (May 1994), 91–122. https:
//doi.org/10.1145/176575.176576

[12] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. [n.d.].
On Verifying Causal Consistency. In Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL’2017). 626–638.

[13] Eric A. Brewer. 2000. Towards Robust Distributed Systems (Abstract). In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’00). ACM, New York, NY, USA, 7. https://doi.org/10.1145/
343477.343502

[14] Jerzy Brzezinski, C. Sobaniec, and Dariusz Wawrzyniak. 2004. From session
causality to causal consistency. In Proceedings of the 12th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP ’00).
152– 158. https://doi.org/10.1109/EMPDP.2004.1271440

[15] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found. Trends
Program. Lang. 1, 1-2 (Oct. 2014), 1–150. https://doi.org/10.1561/2500000011

[16] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014. Gen-
tleRain: Cheap and Scalable Causal Consistency with Physical Clocks. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SOCC ’14). Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
2670979.2670983

[17] Phillip Gibbons and Ephraim Korach. 1999. Testing Shared Memories. SIAM J.
Comput. 26 (10 1999).

[18] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. Acm Sigact News 33, 2
(2002), 51.

[19] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[20] Kyle Kingsbury. 2017. Jepsen Testing of MongoDB 3.4.0-rc3. https://jepsen.io/
analyses/mongodb-3-4-0-rc3

[21] Kyle Kingsbury. 2020. Jepsen Testing of MongoDB 4.2.6. https://jepsen.io/
analyses/mongodb-4.2.6

[22] Sandeep S Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and
Marcelo Leone. 2014. Logical physical clocks. In International Conference on
Principles of Distributed Systems. 17–32.

[23] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565.

[24] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[25] Richard J Lipton and Jonathan S Sandberg. 1988. PRAM: A scalable shared mem-
ory. Technical Report.

[26] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[27] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference (USENIX ATC’14). USENIX Association, 305–320.

[28] Kit Patella. 2018. Jepsen Testing of MongoDB 3.6.4. https://jepsen.io/analyses/
mongodb-3-6-4

[29] Matthieu Perrin, Achour Mostefaoui, and Claude Jard. [n.d.]. Causal Consis-
tency: Beyond Memory. In Proceedings of the 21st ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP ’16). Article 26. https://doi.org/10.
1145/2851141.2851170

[30] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable Consistency
in MongoDB. Proc. VLDB Endow. 12, 12 (Aug. 2019), 2071–2081.

[31] The MongoDB Team. 2017. MongoDB 3.6.0-rc0 is released. https://www.
mongodb.com/blog/post/mongodb-360-rc0-is-released

[32] Misha Tyulenev, Andy Schwerin, Asya Kamsky, Randolph Tan, Alyson Cabral,
and Jack Mulrow. [n.d.]. Implementation of Cluster-Wide Logical Clock and
Causal Consistency in MongoDB. In Proceedings of the 2019 International Confer-
ence on Management of Data (SIGMOD’2019). 636–650.

[33] Hengfeng Wei, Yu Huang, Jiannong Cao, Xiaoxing Ma, and Jian Lu. 2013. Ver-
ifying Pipelined-RAM Consistency over Read/Write Traces of Data Replicas.
IEEE Transactions on Parallel and Distributed Systems 27 (02 2013). https:
//doi.org/10.1109/TPDS.2015.2453985

[34] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Checking TLA+

Specifications. In Advanced Research Working Conference on Correct Hardware
Design and VerificationMethods (CHARME ’99). 54–66. https://doi.org/10.1007/3-
540-48153-2_6

https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns/
https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns/
https://github.com/jepsen-io/jepsen
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://www.mongodb.com/
https://github.com/brianfrankcooper/YCSB
https://doi.org/10.1109/MC.2012.33
https://aphyr.com/posts/284-call-me-maybe-mongodb
https://aphyr.com/posts/284-call-me-maybe-mongodb
https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://doi.org/10.1145/176575.176576
https://doi.org/10.1145/176575.176576
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/EMPDP.2004.1271440
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/78969.78972
https://jepsen.io/analyses/mongodb-3-4-0-rc3
https://jepsen.io/analyses/mongodb-3-4-0-rc3
https://jepsen.io/analyses/mongodb-4.2.6
https://jepsen.io/analyses/mongodb-4.2.6
https://jepsen.io/analyses/mongodb-3-6-4
https://jepsen.io/analyses/mongodb-3-6-4
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/2851141.2851170
https://www.mongodb.com/blog/post/mongodb-360-rc0-is-released
https://www.mongodb.com/blog/post/mongodb-360-rc0-is-released
https://doi.org/10.1109/TPDS.2015.2453985
https://doi.org/10.1109/TPDS.2015.2453985
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Causal Consistency in MongoDB
	2.2 Causal Consistency: Formal Specification
	2.3 Causal Consistency Checking
	2.4 Jepsen

	3 Jepsen Testing of Causal Consistency of MongoDB
	3.1 The Official Jepsen Testing
	3.2 Our Design of Jepsen Testing

	4 Preliminary Evaluations
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Unexpected ThinAirRead Bad Patterns

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

