
Wei HF, Tang RZ, Huang Y et al. Jupiter made abstract, and then refined. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 35(6): 1343–1364 Nov. 2020. DOI 10.1007/s11390-020-0516-0

Jupiter Made Abstract, and Then Refined

Heng-Feng Wei, Member, CCF, Rui-Ze Tang, Yu Huang∗, Member, CCF, and
Jian Lv, Fellow, CCF, Member, ACM

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

E-mail: hfwei@nju.edu.cn; tangruize97@gmail.com; {yuhuang, lj}@nju.edu.cn

Received April 10, 2020; revised October 22, 2020.

Abstract Collaborative text editing systems allow multiple users to concurrently edit the same document, which can be

modeled by a replicated list object. In the literature, there is a family of operational transformation (OT)-based Jupiter

protocols for replicated lists, including AJupiter, XJupiter, and CJupiter. They are hard to understand due to the subtle

OT technique, and little work has been done on formal verification of complete Jupiter protocols. Worse still, they use

quite different data structures. It is unclear about how they are related to each other, and it would be laborious to verify

each Jupiter protocol separately. In this work, we make contributions towards a better understanding of Jupiter protocols

and the relation among them. We first identify the key OT issue in Jupiter and present a generic solution. We summarize

several techniques for carrying out the solution, including the data structures to maintain OT results and to guide OTs.

Then, we propose an implementation-independent AbsJupiter protocol. Finally, we establish the (data) refinement relation

among these Jupiter protocols (AbsJupiter included). We also formally specify and verify the family of Jupiter protocols

and the refinement relation among them using TLA+ (TLA stands for “Temporal Logic of Actions”) and the TLC model

checker. To our knowledge, this is the first work to formally specify and verify a family of OT-based Jupiter protocols and

the refinement relation among them. It would be helpful to promote a rigorous study of OT-based protocols.

Keywords Jupiter protocol, operational transformation, refinement, replicated list, TLA+

1 Introduction

Collaborative text editing systems, such as Google

Docs 1○, Firepad 2○, Overleaf 3○, and SubEthaEdit 4○, al-

low multiple users to concurrently edit the same docu-

ment. For availability, such systems often replicate the

document at several replicas. For low latency, replicas

are required to respond to user operations immediately

and updates are propagated asynchronously [1, 2].

The replicated list object is frequently used to model

the core functionality (e.g., insertion and deletion) of

replicated collaborative text editing systems [1–4]. A

common specification for it is strong eventual consis-

tency (SEC) [3]. It requires that whenever two replicas

have processed the same set of updates, they have the

same list. A family of Jupiter protocols [3] for imple-

menting such a replicated list have been proposed, in-

cluding XJupiter [4] (a multi-client version of [3] given

by Xu et al.), AJupiter [2] (another multi-client version

of [3] given by Attiya et al.), and CJupiter [6] (short for

Compact Jupiter). They adopt the client/server (C/S)

architecture, where the server serializes operations and

propagates them from one client to others (Fig.1). Note

that since replicas are required to respond to user ope-

rations immediately, the C/S architecture does not im-

Regular Paper

Special Section on Software Systems 2020

This work was (partially) supported by the National Natural Science Foundation of China under Grant Nos. 61690204, 61932021,
61702253, and 61772258.

∗Corresponding Author
1○GoogleDocs. https://docs.google.com, Sept. 2020.
2○Firepad. https://firepad.io/, Sept. 2020.
3○Overleaf. https://www.overleaf.com/, Sept. 2020.
4○SubEthaEdit. https://subethaedit.net/, Sept. 2020.

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-0516-0
http://dx.doi.org/10.1007/s11390-020-0516-0

1344 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

ply that clients process operations in the same order.

To achieve convergence, Jupiter adopts the operational

transformation (OT) technique [1, 7] to resolve the con-

flicts caused by concurrent operations. The idea of OT

is, for each replica, to process local operations imme-

diately and to transform received operations accord-

ing to the effects of previously processed concurrent

operations. The transformation rules are called OT

functions [1, 3].

Fig.1. System model. The circled numbers indicate the serializa-
tion order (so) in which the operations are received at the server
(Section 3). The list produced by Jupiter protocols are shown in
boxes [6].

Example 1 (Illustration of OT). Fig.2 shows a repli-

cated list system with two client replicas C1 and C2

which initially hold the same list “ab”. Suppose that

user 1 issues o1 = Ins(1, x) at C1 and concurrently user

2 issues o2 = Del(2) at C2. After being executed lo-

cally, each operation is sent to the other replica. With-

out OT, C1 and C2 wind up with different lists (i.e.,

“xb” and “xa”, respectively). With OT, o2 is trans-

formed to o′2 = Del(3) at C1, taking into account

the fact that o1 has inserted an element at position

1. Meanwhile, o1 remains unchanged after OT at C2.

As a result, two replicas converge to the same list “xa”.

When several replicas diverge by multiple ope-

rations, OT becomes much more subtle and error-

prone. Some published OT-based protocols [1, 8] were

even later shown incorrect [9–11]. The intrinsic comple-

xity in concurrency control makes the OT-based Jupiter

protocols hard to understand. Moreover, little has

been done on the formal verification of complete OT-

based protocols (not only of OT functions). Worse still,

Jupiter protocols use quite different data structures,

rendering the relation among them unclear. It would be

also laborious and wasteful to prove or verify that the

Jupiter protocols satisfy a certain property one by one.

In this work, we make the following contributions to-

wards a better understanding of Jupiter protocols and

the relation among them (Fig.3).

Fig.2. Example for OT. The positions are indexed from 1. (The
server is not shown.) (a) Without OT, the states of C1 and C2

diverge. (b) With OT, C1 and C2 converge to the same state.

• We first identify the key issue involving OT that

Jupiter needs to address as follows: when a replica r re-

ceives an operation op, which operations should op be

transformed against and in what order before it is ap-

plied? We also present a generic solution to this issue:

transform op against the set of concurrent operations

previously executed at r in the serialization order es-

tablished at the server. Then, we summarize several

techniques that the Jupiter protocols adopt to carry out

the solution, including those for deciding whether two

operations are concurrent, those for determining the se-

rialization order, and the data structures to maintain

(intermediate) OT results and to guide OTs.

[4] [6]

Abst
rac

t f
rom

Data
 St

ruc
tur

es

O
T

(S
e
c
ti
o
n
 3

)

Generic Solution

Fig.3. Overview of contributions.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1345

• We propose AbsJupiter, an abstract Jupiter pro-

tocol which captures the OT essence of existing Jupiter

protocols. It addresses the key OT issue in a way

which is abstract from concrete data structures by using

mathematical sets.

• For different purposes such as performance or ease

of correctness proof, existing Jupiter protocols use quite

different data structures. The implementation details

in data structures have obscured the similarities among

them. We show that the existing Jupiter protocols are

actually (data) refinements [12–14] of AbsJupiter in data

structures. Specifically, we show that AJupiter is a re-

finement (a.k.a. implementation) of XJupiter, XJupiter

is a refinement of CJupiter, and CJupiter is a refine-

ment of AbsJupiter. As a consequence, the properties

like SEC and WLSpec (weak list specification defined

in Subsection 2.3) that hold for AbsJupiter also auto-

matically hold for other Jupiter protocols.

• We formally specify the family of Jupiter pro-

tocols and the refinement mappings among them in

TLA+ [15] 5○. Finally, we present the model checking re-

sults conducted by TLC [16] (the model checker [17] for

TLA+) of verifying both the properties for Jupiter pro-

tocols and refinement relations among them.

Section 2 provides a brief introduction to TLA+

and covers preliminaries on system model, OT, and list

specifications. Section 3 identifies the key OT issue

in Jupiter and presents a generic solution. Section 4

describes the family of Jupiter protocols, including Ab-

sJupiter. Section 5 establishes the refinement relation

among Jupiter protocols. Section 6 presents the model

checking results. Section 7 discusses related work. Sec-

tion 8 concludes the paper.

2 Preliminaries

2.1 TLA+

The specification language TLA+ was designed by

Lamport for modelling and reasoning about concurrent

and distributed programs [15]. In TLA+, systems are

modelled as state machines. A state machine is de-

scribed by its initial states and actions. A state is an

assignment of values to variables. An action is a rela-

tion between old states and new states, and is repre-

sented by a formula over unprimed variables referring

to the old state and primed variables referring to the

new state. For example, x′ = y + 42 is the relation as-

serting that the value of x in the new state is 42 greater

than that of y in the old state.

TLA+ is based on TLA, the Temporal Logic of

Actions [18]. A program is specified in TLA+ as a

temporal formula of TLA of the form Spec , Init ∧

�[Next]vars ∧ L, where Init is a predicate specifying

all possible initial states of the program, Next specifies

the next-state relation of the program, � is the tem-

poral operator read “Always”, vars is the tuple of all

variables used in the program, and L is a fairness pro-

perty (not used in this paper). The next-state relation

Next is typically a disjunction of all the actions of the

program. The expression [Next]vars is true if Next is

true, meaning that some action is true and thus taken,

or if vars stutters, meaning that their values are un-

changed. A behavior of the program specified by Spec

(ignoring L) of the above form is a sequence of states

that satisfy Spec, namely, the Init predicate holds in

the first state of this sequence, and the next-state rela-

tion [Next]var holds for any two consecutive states of

this sequence.

TLA+ combines TLA with the first-order logic and

Zermelo-Fraenkel set theory. Table 1 summarizes the

operators in the logic and set theory we use in this pa-

per. It is an excerpt from the complete summary of

TLA+ 6○ and shows only the operators that have spe-

cial notations in TLA+.

Specifications of programs are grouped into mod-

ules. In a module, we can declare constants

(constants) and variables (variables), define ope-

rators (F (x1, · · · , xn) , · · ·), and claim theorems

(theorem). A module M can import the decla-

rations, definitions, and theorems from other mod-

ules M1, · · · ,Mn by extending them, namely writing

extends M1, · · · ,Mn in M . Modules can also be

instantiated. Let us consider the following instance

statement in module M :

IM1 , instance M1 with p1 ← e1, · · · , pn ← en,

where pi consists of all declared constants and variables

of M1 and ei are valid expressions in M 7○. For each

operator F and its definition d of module M1, this de-

fines F to be the operator, denoted by IM1!F , whose

5○https://github.com/hengxin/jupiter-refinement-project, Sept. 2020.
6○Leslie Lamport. Summary of TLA+. http://lamport.azurewebsites.net/tla/summary-standalone.pdf, Sept. 2020.
7○Note that constant parameters pi must be instantiated by constant-level expressions built up from constants and constant

operators and variable parameters by state-level expressions which may contain variables and the enabled operator (not used in this
paper). For simplicity, we omit the formal definitions of levels [15].

1346 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 1. Summary of TLA+ Operators Used in This Paper

Category Operator Meaning

Logic choose x ∈ S : P (x) x in S satisfying P (x) 8○

Set subset S Powerset (i.e., set of subsets) of S

{e : x ∈ S} Set of elements e such that x is in S

{x ∈ S : p} Set of elements x in S satisfying p

Function f [e] Function application

[x ∈ S 7→ e] Function f such that f [x] = e for x ∈ S

[f except ![e1] = e2], where e2 may
contain @

Function f̂ equals f except that f̂ [e1] = e2, where any occurrence
of @ in e2 stands for f [e1]

Record e.h The h-field of record e

[h1 7→ e1, · · · , hn 7→ en] The record whose hi field is ei

[h1 : S1, · · · , hn : Sn] Set of all records with hi field in Si

[r except !.h = e], where e may con-
tain @

Record r̂ equals r except that r̂.h = e, where any occurrence of @
in e stands for r.h

Tuple e[i] The i-th component of tuple e

〈e1, · · · , en〉 The n-tuple whose i-th component is ei
Sequence Head(s) The first element of sequence s

Last(s) The last element of sequence s

Tail(s) The tail of sequence s, which consists of s with its head removed

Range(s) The set of elements of sequence s

Action operator e′ The value of e in the new state of an action

[A]e A ∨ (e′ = e)

Temporal operator �F F is always true

definition is obtained from d by replacing each pi with

ei.

TLC is an explicit-state model checker for

TLA+ [16]. It can compute and explore the state space

of finite-state instances of TLA+ specifications. These

finite-state instances are called TLC models of TLA+

specifications. For example, a TLC model of a specifica-

tion describing a distributed system consisting of a set

of processors declared as constants Proc should in-

stantiate Proc with a set consisting of a fixed number of

processors, like Proc , {1, 2, 3}. We can also represent

a process by a TLC model value, which is considered to

be unequal to any other values in TLA+. Therefore,

we can instantiate Proc with a set of model values

Proc , {p1, p2, p3}. Moreover, if permuting the ele-

ments in a set of model values does not change whether

a behavior satisfies a desired specification, we can fur-

ther use the symmetry set technique to reduce the state

space that TLC has to check [15].

In TLA+, refinement is logical implication. Suppose

we have two specifications: AbsSpec defined in mod-

ule AbsModule with variables x1, · · · , xm, y1, · · · , yn,

and ImplSpec defined in module ImplModule with

variables x1, · · · , xm, z1, · · · , zp. Let X , Y , and Z

denote x1, · · · , xm, y1, · · · , yn, and z1, · · · , zp, respec-

tively. To verify that ImplSpec refines AbsSpec, for-

mally ImplSpec =⇒ AbsSpec, we need to show that

for each behavior satisfying ImplSpec, there is some

way to assign values of the variables Y in each state so

that the resulting behavior satisfies AbsSpec [13]. This

can be done by explicitly specifying those values of Y

in terms of X and Z. Specifically, for each yi, we de-

fine an expression yi in terms of X and Z, substitute

yi ← yi in AbsSpec to get AbsSpec, and we show that

ImplSpec refines AbsSpec. The substitution yi ← yi

is called a refinement mapping. To verify the assertion

that ImplSpec refines AbsSpec under such a refinement

mapping in TLA+, we can add the following definition

to module ImplModule (AbsSub is a fresh identifier).

AbsSub , instance AbsModule with

y1 ← y1, · · · , yn ← yn.

Then we let TLC check the theorem:

theorem ImplSpec =⇒ AbsSub!AbsSpec,

which is added to module ImplModule.

There are two kinds of refinement [14], namely data

refinement [12] and step refinement. In data refinement,

the “abstract” data of a high-level protocol is refined by

a “concrete” representation of a lower-level protocol [12].

In step refinement, a single step (i.e., actions in terms

of TLA+) of a high-level protocol is refined by multiple

steps of a lower-level protocol [14].

8○ The most common use of the choose operator is to select a unique value satisfying P (x) [15]. If there is no element x ∈ S

satisfying P (x), then TLC will report an error. On the other hand, if there are several such x’s, then an arbitrary one is chosen.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1347

Constructing a refinement mapping may re-

quire adding auxiliary variables to the (lower-level)

protocols [13, 19]. One kind of auxiliary variables that

we will use in data refinement among Jupiter proto-

cols is called history variables [13, 19]. Intuitively, his-

tory variables record the information about past beha-

viors of a protocol, and are typically not used by the

actual variables of the protocol. Therefore, it is safe

to add history variables to protocols, without altering

their behaviors [13].

2.2 System Model

We let Client denote the set of client replicas,

Server the unique server replica, and Replica ,

Client∪{Server} the set of all replicas. Client replicas

are connected to the server replica via FIFO channels.

The set of messages is denoted by M . A replica is mod-

elled as a state machine. Each replica r maintains its

current list list[r] (initially empty; denoted by ǫ) and

interacts with three kinds of actions from users and

other replicas.

• Do(c ∈ Client, op ∈ Op). Client c receives an

operation op ∈ Op (defined in Subsection 2.3) from an

unspecified user (we also sometimes say that client c

generates the operation op) and responds to the user

immediately. It then sends the update in a message

m ∈M to the server asynchronously.

• Rev(c ∈ Client,m ∈ M). Client c receives and

processes a message m from the server.

• SRev(m ∈ M). The server receives a message

m from a client. It will produce and broadcast a new

message to other clients.

Example 2 (Behaviors of Replicas). We consider

client c3 in Fig.1. First, in Rev(c3,), client c3 re-

ceives a message containing the information about o1

(maybe transformed) of client c1 from the server. Next,

in Do(c3, o4), it generates operation o4 (Ins(b, 2)), ap-

plies o4 locally, and sends o4 to the server. Then, in

Rev(c3,), it receives messages containing the informa-

tion about o2 and o3 of clients c1 and c2 respectively,

from the server. The list list[c3] at c3 is updated ac-

cordingly.

2.3 List, OT, and Weak List Specification

A replicated list object supports two types of update

operations: Del and Ins, defined as records in module

Op (Fig.4). Following [2], we assume that all inserted

elements are unique, which can be achieved by attach-

ing replica identifiers and local sequence numbers. The

priority field “pr” of Ins helps to resolve the conflicts

caused by two concurrent Ins operations that are in-

tended to insert different elements at the same position.

Module OT (Fig.5) shows a complete definition of

OT functions for lists [1, 3]. OT (lop, rop) transforms lop

against rop by calling the appropriate OT function ac-

cording to the types of lop and rop. For example,

OTID defines how an Ins operation ins is transformed

against a Del operation del. It adjusts the insertion po-

sition of ins according to the deletion position of del.

We consider the weak list specification WLSpec [2],

which is stronger than strong eventual consistency

(SEC) [5]. WLSpec is equivalent to the “pairwise state

compatibility property” [6]. It requires any pair of lists

across the system to be compatible. Two lists l1 and

l2 are compatible if for any two common elements e1

and e2 of l1 and l2, the relative ordering of e1 and e2 is

the same in l1 and l2 (see module WLSpec (Fig.6) for

the formal specification of Compatible). Let hlist be a

set of lists. WLSpec is defined as WLSpec , ∀l1, l2 ∈

hlist : Compatible(l1, l2) (see also module AbsJupiterH

in Subsection 6.2).

Example 3 (Weak List Specification. Adapted from

[6]). We consider the execution in Fig.1. There exist

three replica states with lists l1 = ba, l2 = ax, and

l3 = xb, respectively. This is allowed by WLSpec, since

the lists are pairwise compatible. However, an exe-

cution is not allowed by WLSpec, if it contained two

states with, say, l = ab and l′ = ba.

3 Jupiter Family

The key issue for Jupiter protocols to address is as

follows. When a replica r receives an operation op,

which operations should op be transformed against and

in what order before it is applied? The solution is to

Fig.4. TLA+ module Op.

1348 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Fig.5. TLA+ module OT .

Fig.6. TLA+ module WLSpec.

transform op against the operations that are concur-

rent with it and have been previously executed at r

in their serialization order, denoted by so, i.e., the or-

der in which they are received by the server. The four

Jupiter protocols we study differ in the way they carry

out the solution. Table 2 summarizes several key tech-

niques that they adopt to carry out the solution, in-

cluding those for deciding whether two operations are

concurrent, those for determining the serialization or-

der, and the data structures to maintain (intermediate)

OT results and to guide OTs.

3.1 Context-Based OT (COT)

According to whether they use context-based ope-

rations (Cop) and context-based OT (COT) [20], Jupiter

protocols fall into two categories: context-based includ-

ing AbsJupiter, CJupiter, XJupiter, and non-context

based, i.e., AJupiter. In this subsection, we define Cop

and COT . How they are used to decide whether two

operations are concurrent or not is explained in Sub-

section 3.3, along with the concrete data structures.

Table 2. Techniques Adopted by Jupiter Protocols to Address
the Key OT Issue

Protocol Concurrent SO Data

Operation Order Structure

AbsJupiter COT SV Set

CJupiter [6] COT SV n-ary digraph

XJupiter [4] COT COT 2D digraph

AJupiter [2] ACK Buffer 1D buffer

Each operation op ∈ Op is associated with a unique

operation identifier (oid, for short) in Oid, which is a

record of client c that generates op and a local sequence

number cseq[c] of c. Each replica r maintains their

document state ds[r] as the set of operation identifiers

it has processed. The document state ds[r] is updated

to include oid whenever the replica r receives and pro-

cesses an operation with oid.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1349

Operations in ds[r] of each replica r are related to

each other via contexts. Intuitively, the context of an

operation is a set of operations that it is aware of. For-

mally, in module COT (Fig.7), a context-based ope-

ration cop ∈ Cop is a record of operation op ∈ Op,

its oid oid ∈ Oid, and its context ctx ⊆ Oid repre-

senting a document state. When an operation is gene-

rated by client c, its context is set to be the current

document state ds[c] of c. When a context-based ope-

ration lcop is transformed against another one rcop,

lcop.ctx will be updated to include rcop.oid (see mod-

ule COT). Note that according to the context-based

condition (CC) [20], two context-based operations can

be transformed against each other, only if they have

the same context. This will be guaranteed by context-

based Jupiter protocols.

3.2 Serial Views (SV)

In AbsJupiter and CJupiter, replicas need to de-

cide the so order among operations (i.e., the order in

which they are received by the server) with local know-

ledge. To do this, each replica r maintains a serial

view serial[r] which is a sequence of oids, representing

its own knowledge about so. The server always has the

latest serial view serial[Server] and updates it in SRev

by each time appending to it the recently received oid.

In addition, serial[Server] will be broadcast to clients

along with actual messages. Each client c synchronizes

its serial view with the server by updating serial[c] to

the latest serial[Server] that it receives in Rev(c,).

Let us consider two operation identifiers oid1 and

oid2 that are generated or received by some replica r.

The operator so(oid1, oid2, sv) in module SV (Fig.8)

decides whether oid1 precedes (or will precede) oid2 in

so order given the local serial view sv of r. There are

three cases: 1) if both have been at the server, we use

the order in which they arrived at the server, which is

captured by the positions they are in sv; 2) if none has

been at the server, they must be generated by the same

client, and we use the order they were generated; 3)

otherwise, the one that has been at the server precedes

the other that has not.

3.3 Data Structures

3.3.1 Set

In AbsJupiter, each replica r maintains a set

copss[r] of context-based operations. When a replica

r receives a context-based operation cop, it calls

xForm(r, cop) of module Set (Fig.9) to transform cop

against a subset of context-based operations in copss[r]

that are concurrent with cop in their so order.

Due to the FIFO communication, we have that

cop.ctx ⊆ ds[r]. Thus, xForm first calculates the set of

(oids of) concurrent operations with cop as the set diffe-

rence ctxDiff between ds[r] and cop.ctx. Then it re-

cursively transforms cop against the context-based ope-

rations in copss[r] whose oids are in ctxDiff in their

so order according to the serial view serial[r]. This is

done in xFormHelper(coph, ctxDiffh, copssh).

1) If ctxDiffh is empty, the most recently trans-

formed coph and the latest data structure copssh are

returned.

2) Otherwise, xFormHelper chooses the next ope-

ration fcoph against which coph is to be transformed,

Fig.7. TLA+ module COT .

Fig.8. TLA+ module SV .

1350 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Fig.9. TLA+ module Set.

such that fcoph.oid is the first one in the current

ctxDiffh and fcoph.ctx = coph.ctx. Because the com-

munication in the client/server model is FIFO, when an

operation cop is received by some replica, the operations

in its context have already been in this replica. Thus,

such fcoph satisfying fcoph.ctx = cop.ctx exists. The

existence of fcoph in recursion can be further justified

by induction.

3) coph and fcoph are transformed against each

other. The intermediate transformed operation xcoph

is recursively transformed against the remaining con-

current operations (with oid) in ctxDiffh\{foph.oid}.

3.3.2 Digraph

In CJupiter and XJupiter, the set of context-based

operations is organized into edge-labeled digraphs. A

digraph is represented by a record with node and edge

fields (see IsDigraph of module Digraph (Fig.10)).

Each node in G.node of a digraph G represents a

document state. Each directed edge e in G.edge is

labeled with a context-based operation cop satisfying

cop.ctx = e.from, meaning that when applied, cop

changes the document state from e.from to e.to =

e.from ∪ {cop.oid}. The operator ⊕ takes the union

of two records with node and edge fields.

Fig.10. TLA+ module Digraph.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1351

In CJupiter and XJupiter, when a replica r (ei-

ther client or server) receives a context-based ope-

ration cop, it calls xForm(NextEdge, r, cop, g) of mod-

ule Digraph to iteratively transform cop against a se-

quence of context-based operations along a path in

some digraph g maintained by r. This path starts with

the node u equal to cop.ctx and ends with the one equal

to ds[r]. Each such path contains the operations whose

oids are in ds[r]\cop.ctx, which are concurrent with cop

due to the FIFO communication. The next edge is cho-

sen by NextEdge specific to CJupiter and XJupiter to

ensure the so order. xFormHelper(uh, vh, coph, gh)

starts the transformation with uh ← u (Fig.11 and

module Digraph).

Fig.11. Illustration of xForm of module Digraph.

1) If uh = ds[r], the most recently transformed ope-

ration coph, the record gh consisting of nodes and edges

produced in xForm so far, and the node and the edge

(collected in lg) produced in the last iteration of trans-

formation are returned.

2) Otherwise, the next edge e outgoing from uh is

chosen using NextEdge(r, uh, g) specific to CJupiter

and XJupiter.

3) coph and ecop are transformed against each other.

The intermediate transformed operation coph2ecop is

then recursively transformed against the sequence of

operations starting with node eu , e.to, the successor

of uh along edge e.

3.3.3 Buffer

AJupiter maintains buffers (i.e., sequences) of ope-

rations of type Op. xForm(op, ops) of module Buffer

(Fig.12) transforms an operation op against a buffer

ops of operations (see Fig.13). It utilizes xFormOpOps

(op, ops) and xFormOpsOp(ops, op) to obtain the last

transformed operation xop and the transformed buffer

xops, respectively. Specifically, xFormOpOps returns

the sequence of intermediate transformed operations,

the last one of which is the desired xop.

1) If ops is empty, 〈op〉 is returned.

2) Otherwise, it prepends op to the resulting se-

quence obtained by recursively transforming OT (op,

Head(ops)) against the tail Tail(ops) of ops.

It also facilitates xFormOpsOp to generate xops

by transforming each operation in ops against the

corresponding one in opX , xFormOpOps(op, ops).

Finally, xFormShift(op, ops, shift) transforms op

against the subsequence of ops obtained by shifting the

first shift operations out of ops.

4 Jupiter Protocols

In this section, we formally specify Jupiter proto-

cols in TLA+, including AbsJupiter that we propose as

an abstract solution. We focus on when and how OTs

are performed and on the data structures supporting

OTs. As running examples, we will illustrate the beha-

viors of client c3 in different Jupiter protocols under the

schedule of Fig.1.

4.1 AbsJupiter

In AbsJupiter (Fig.14), each replica r maintains a

set copss[r] of context-based operations. The operator

Fig.12. TLA+ module Buffer.

1352 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Perform(r, cop) calls xForm(r, cop) of module Set to

transform cop in copss[r]. The transformed operation

xform.xcop.op is applied to list[r] and copss[r] is up-

dated to xform.xcopss.

Fig.13. Illustration of xForm of module Buffer.

In Do(c, op), the client c first wraps op into a

context-based operation cop by attaching oid and ctx =

ds[c] to it. Then it updates copss[c] to include cop, ap-

plies op to list[c], and sends cop to the server. When

the server receives a context-based operation cop from

client c, it calls Perform(Server, cop) and then broad-

casts cop to other clients except c (see SRev(cop)). In

Rev(c, cop), client c just calls Perform(c, cop).

Thanks to the mathematical set it uses, AbsJupiter

is abstract from implementations with concrete data

structures. As shown in Section 5, it embraces the other

three Jupiter protocols as refinements.

Example 4 (Illustration of AbsJupiter). We illus-

trate client c3 in AbsJupiter under the schedule of Fig.1

(see also Fig.15(a)). For convenience, we denote, for

instance, an operation o3 with context {o1, o2, o4} by

o3{o1, o2, o4}.

After receiving and applying o1{ } (Ins(x, 1)) of

client c1 from the server, client c3 generates o4

(Ins(b, 2)). It wraps o4 into a context-based operation

o4{o1}, adds o4{o1} to copss[c3] = {o1{ }}, applies o4

locally, and then sends o4{o1} to the server.

Next, client c3 receives o2{o1} (Del(1)) of client c1
from the server. By xForm(c3, o2{o1}), it transforms

o2{o1} against the set of context-based operations in

copss[c3] = {o1{ }, o4{o1}}. Since o4 is the only concur-

rent operation with o2 in copss[c3], o2{o1} and o4{o1}

are transformed against each other. As a result, the

new context-based operations o2{o1, o4} (Del(1)) and

o4{o1, o2} (Ins(b, 1)) are added into copss[c3]. The

transformed operation Del(1) is applied locally.

Finally, client c3 receives o3{o1} (Ins(a, 1)) of

client c2 from the server. By xForm(c3, o3{o1}),

it transforms o3{o1} against the set of

context-based operations in copss[c3] =

{o1{ }, o4{o1}, o2{o1}, o4{o1, o2}, o2{o1, o4}}. The set

of concurrent operations with o3 in copss[c3] is calcu-

lated as {o1, o2, o4} \ {o1} = {o2, o4}. Since o2 precedes

o4 in the so order according to serial[c3] = 〈o1, o2〉,

o3{o1} is first transformed with o2{o1}, yielding

o3{o1, o2} (Ins(a, 1)) and o2{o1, o3} (Del(2)). Then,

o3{o1, o2} is transformed with o4{o1, o2} (Ins(b, 1)),

yielding o3{o1, o2, o4} (Ins(a, 2)) and o4{o1, o2, o3}

(Ins(b, 1)). At last, c3 applies the transformed ope-

ration Ins(a, 2) locally, obtaining the list ba.

4.2 CJupiter

In CJupiter (Fig.16), each replica r maintains an

n-ary digraph css[r] (initially EmptyGraph), a di-

graph where the outdegree of each node can be at

most n (see module CJupiter). In Do(c, op), the client

c first wraps op into a context-based operation cop.

Then it applies op to list[c], inserts an edge labeled

by cop from the node ds[c] in css[c], and sends cop

to the server. The definitions of Rev and SRev of

CJupiter are the same as those of AbsJupiter, ex-

Fig.14. TLA+ module AbsJupiter.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1353

(d)

(a)

(2) (3) (4)(1)

(b) (c)

x

x

ax xb

xb

ba ba

b

b

a

a

(2) (3) (4)(1)

Fig.15. Illustration of client c3 in Jupiter protocols under the schedule of Fig.1. (a) AbsJupiter. (b) CJupiter. (c) XJupiter. (d)
AJupiter.

cept that xForm(NextEdge, r, cop, css[r]) of module

Digraph is called by replica r to transform cop against

a sequence of context-based operations with cop along

a path in digraph css[r]. The next edge from a given

node chosen in NextEdge is the first one in terms of so

according to the serial view serial[r] of r. The interme-

diate xform.xg produced in xForm is integrated into

css[r] and the transformed operation xform.xcop.op is

applied to list[r].

It is remarkable that although (n+1) n-ary digraphs

are maintained by CJupiter, they are (eventually) all

the same. In other words, at a high level, CJupiter

maintains only a single n-ary digraph, which contains

exactly all replica states across the system [6]. This

makes it feasible to reason about global properties like

weak list specification [2, 6].

Example 5 (Illustration of CJupiter, Adapted from

[6]). We illustrate client c3 in CJupiter under the sched-

ule of Fig.1 (also see Fig.15(b)). For convenience, we

denote, for instance, a node v with document state

1354 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Fig.16. TLA+ module CJupiter.

{o1, o4} by v14.

After receiving and applying o1{ } of client c1 redi-

rected by the server, client c3 generates o4 (Ins(b, 2)).

It wraps o4 into a context-based operation o4{o1}, links

a new node v14 to v1 via an edge labeled by o4{o1}, and

then sends o4{o1} to the server.

Next, client c3 receives o2{o1} (Del(1)) of client c1
from the server. The context of o2{o1}matches node v1.

By xForm, o2{o1} and o4{o1} are transformed against

each other. Node v124 is created and is linked to v12

and v14 via the edges labeled with o4{o1, o2} (Ins(b, 1))

and o2{o1, o4} (Del(1)), respectively.

Finally, client c3 receives o3{o1} (Ins(a, 1)) of client

c2 from the server. The context of o3{o1} matches node

v1. By xForm, o3{o1} will be transformed with the

operation sequence consisting of operations along the

“first” (in terms of so with serial[c3] = 〈o1, o2〉) edges

from v1 to v124. Specifically, o3{o1} is first transformed

with o2{o1}. Then, o3{o1, o2} (Ins(a, 1)) is transformed

with o4{o1, o2} (Ins(b, 1)), yielding v1234, o3{o1, o2, o4}

(Ins(a, 2)), and o4{o1, o2, o3} (Ins(b, 1)). Client c3 ap-

plies Ins(a, 2), obtaining list ba.

4.3 XJupiter

XJupiter (Fig.17) uses 2-dimentional (2D) digraphs

where the outdegree of each node is at most 2. Each

client c maintains a single 2D digraph c2ss[c], and the

server maintains n 2D digraphs, one digraph s2ss[c] per

client c. Conceptually, a 2D digraph, either c2ss[c] or

s2ss[c], has two dimensions: a local dimension for stor-

ing operations generated by c and a remote dimension

for storing operations generated by other clients.

In Do(c, op), the client c first wraps op into a

context-based operation cop by attaching oid and ctx =

ds[c] to it. Then it applies op to list[c], inserts an edge

labeled by cop from node ds[c] in c2ss[c] along the local

dimension, and sends cop to the server.

When the server receives a context-based operation

cop from client c, it transforms cop against the context-

based operations along the remote dimension from node

u , cop.ctx to ds[Server] in s2ss[c]. In SRev(cop), this

is done in xForm(NextEdge, Server, cop, s2ss[c]) of

module Digraph, where NextEdge returns the unique

outgoing edge of a given node. Then, the transformed

operation xform.xcop.op is applied to list[Server],

s2ss[c] is updated to integrate xform.xg, and xform.lg

is inserted to the remote dimension of each digraph

s2ss[cl 6= c]. Finally, the server broadcasts the trans-

formed context-based operation xform.xcop to other

clients except c.

When client c receives a context-based operation

cop from the server, it calls xForm(NextEdge, c, cop,

c2ss[c]) of module Digraph to transform cop against

the operations along the local dimension from node

u , cop.ctx to ds[c] in c2ss[c]. The intermediate

xform.xg is integrated into c2ss[c] and the transformed

operation xform.xcop.op is applied to list[c].

Since the transformed context-based operations are

broadcast by the server in XJupiter, XJupiter is slightly

optimized in implementation at clients with respect to

CJupiter, by eliminating redundant OTs that have al-

ready been performed at the server [6]. More impor-

tantly, this improvement makes it possible to reduce

n-ary digraphs to 2D-digraphs.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1355

Fig.17. TLA+ module XJupiter.

Example 6 (Illustration of XJupiter. Adapted from

[6]). We illustrate client c3, as well as Server, in

XJupiter under the schedule of Fig.1 (see Fig.18 and

Fig.15(c)). Client c3 in XJupiter behaves similarly as

it does in CJupiter, when it receives o1 of client c1, o4

generated by itself, and o2 of client c1.

We now explain what c3 does when it receives o3 of

client c2 redirected by the server. Client c2 has prop-

agated its operation o3{o1} (Ins(a, 1)) to the server.

At the server, o3{o1} was transformed with o2{o1}

x

a a a b

xb

ba ba ba

xx

ax

(b)(a) (c)

1

12

123 123 123 124

1234 1234 1234

141212 13

1
1

0

Fig.18. Illustration of the server in XJupiter under the schedule of Fig.1. (a) s2ss[c1]. (b) s2ss[c2]. (c) s2ss[c3]. ց: local dimension;
ւ: remote dimension.

1356 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

(Del(1)) along the remote dimension in s2ss[c2], ob-

taining o3{o1, o2} (Ins(a, 1)). Besides being stored

in s2ss[c1] and s2ss[c3], o3{o1, o2} (instead of o3{o1}

that the server receives) is redirected by the server

to clients c1 and c3. At client c3, the context of

o3{o1, o2} matches node v12 in c2ss[c3]. By xForm of

Digraph, o3{o1, o2} should be transformed against the

operations along the local dimension (in the southeast

arrow “ց” in Fig.15(c)) from node v12 in c2ss[c3]. In

this example, o3{o1, o2} is transformed with o4{o1, o2}

(Ins(b, 1)), yielding v1234, o3{o1, o2, o4} (Ins(a, 2)), and

o4{o1, o2, o3} (Ins(b, 1)). Finally, client c3 applies

Ins(a, 2), obtaining the list ba.

4.4 AJupiter

In AJupiter (Fig.19), each client cmaintains a buffer

cbuf [c] for storing the operations (maybe transformed)

it generates, and a counter crec[c] counting the number

of operations it has received from the server since the

last time it generated an operation and sent a message.

Similarly, the server maintains for each client c a buffer

sbuf [c] for storing the (transformed) operations gene-

rated by other clients except c, and a counter srec[c]

counting the number of operations the server has re-

ceived from client c since the last time an operation

which was generated by other clients except c was trans-

formed at the server and a message was broadcast.

The counters (i.e., crec[c] and srec[c]) are piggy-

backed in the ack field in messages AJMsg telling the

other side how many new messages have been received

since the last time a message was sent (see module

AJupiter). When a client c receives a message m of

form [ack 7→ srec[c], op 7→ xop] broadcast by Server, it

knows that op is generated by another client and more

importantly that the set of operations against which

op has been transformed at Server contains the first

ack operations in cbuf [c]. Thus, in Rev(c,m), client

c calls xFormShift(m.op, cbuf [c],m.ack) of module

Buffer to transform op against the subsequence of

operations obtained by shifting the first m.ack ope-

rations out of cbuf [c]. Similarly, when Server receives

a message m of form [c 7→ c, ack 7→ crec[c], op 7→

op] from client c, it knows that among the (trans-

formed) operations in sbuf [c] generated by other clients

except c, the first ack operations have been broad-

cast to c and have been transformed at c before

op was generated. Thus, in SRev(m), Server calls

xFormShift(m.op, sbuf [c],m.ack) of module Buffer

to transform op against the subsequence of operations

obtained by shifting the first m.ack operations out of

sbuf [c]. The transformed operation xop will be ap-

pended to other sbuf [cl] for clients cl 6= c. Finally,

Server sends the transformed operation xop along with

Fig.19. TLA+ module AJupiter.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1357

srec[cl] to client cl 6= c.

By maintaining only 1D buffers and discard-

ing/shifting obsolete operations whenever possible,

AJupiter is the most efficient one among these four

Jupiter protocols.

Example 7 (Illustration of AJupiter). We illustrate

client c3 in AJupiter under the schedule of Fig.1 (see

also Fig.15(d)).

First, when client c3 receives o1 (Ins(x, 1)) of client

c1 from the server, its buffer cbuf [c3] is empty. There-

fore, in Rec, it simply increases crec[c3] by 1 and applies

Ins(x, 1) locally.

Next, client c3 generates o4 (Ins(b, 2)). In Do, it

appends o4 to its currently empty buffer cbuf [c3], re-

sets crec[c3] to 0, applies o4 locally, and sends o4 with

ack = 1 to the server.

Then, client c3 receives o2 (Del(1)) with ack = 0

of client c1 from the server. By xForm of Buffer, o2
(Del(1)) is transformed against o4 (Ins(b, 2)) in buffer

cbuf [c3]. The transformed operation OT (o2, o4) =

Del(1) is applied locally, and o4 in buffer cbuf [c3] is

transformed into OT (o4, o2) = Ins(b, 1).

Finally, client c3 receives transformed o3 (Ins(a, 1)

which happens to be unchanged) with ack = 0 of

client c2 from the server. By xForm of Buffer,

o3 (Del(1)) is transformed against o4 (which is now

Ins(b, 1)) in buffer cbuf [c3]. The transformed operation

OT (o3, o4) = Del(2) is applied locally, obtaining the

list ba. Meanwhile, o4 in buffer cbuf [c3] is transformed

into OT (o4, o3) = Ins(b, 1).

5 Refinement

The OT behaviors (namely, when and how to per-

form OTs) of four Jupiter protocols are essentially the

same under the same schedule of actions of Do, Rev,

and SRev. The main difference lies in the data struc-

tures they use to support OTs (see Fig.20). Specifi-

cally, AbsJupiter maintains sets of context-based ope-

rations. CJupiter organizes these context-based ope-

rations into n-ary digraphs, by grouping the ones with

the same context. Since the transformed context-based

operations are broadcast by the server in XJupiter,

XJupiter is slightly optimized in implementation at

clients by eliminating redundant OTs that have already

been performed at the server [6]. XJupiter synchronizes

each client with its counterpart at the server, where

2D digraphs that distinguish the local dimension from

the remote dimension are sufficient. In AJupiter, each

client maintains only the local dimension for operations

it generates, and the remote dimension for operations

generated by other clients is maintained by its coun-

terpart at the server. Thus, 2D digraphs can be re-

duced to 1D buffers. In this section, we establish the

(data) refinement relation [12–14] among these Jupiter

protocols. Specifically, we show that AJupiter is a

refinement of XJupiter, XJupiter is a refinement of

CJupiter, and CJupiter is a refinement of AbsJupiter,

by defining (data) refinement mappings to simulate the

data structure of one Jupiter protocol using that of an-

other Jupiter protocol. In the following, we focus on

the refinement mappings for data structures mentioned

above, and omit details for other variables.

5.1 CJupiter Refines AbsJupiter

The set copss[r] of context-based operations main-

tained at replica r in AbsJupiter has been organized

into an n-ary digraph css[r] in CJupiter, by group-

ing the ones with the same context. Therefore, the

refinement mapping from CJupiter to AbsJupiter only

needs to simulate copss[r] in AbsJupiter by extract-

ing the context-based operations associated with the

edges of css[r] in CJupiter (see its definition in module

CJupiterImplAbsJupiter (Fig.21)).

5.2 XJupiter Refines CJupiter

The refinement mapping from XJupiter to CJupiter

defined in module XJupiterImplCJupiter (Fig.22)

simulates, for each replica, the n-ary digraph in

CJupiter using the 2D digraph(s) in XJupiter.

At the server side, XJupiter has decomposed the

single n-ary digraph css[Server] in CJupiter into n 2D

digraphs, one s2ss[c] for each client c. Thus, the re-

finement mapping simulates css[Server] by taking the

union of these s2ss[c] for all c ∈ Client. Conceptually,

this can be expressed in TLA+ as (not syntactically

correct):

css[Server]← SetReduce(⊕, Range(s2ss),

EmptyGraph),

where Range(s2ss) is the set of s2ss[c] for all c, and

SetReduce combines Range(s2ss) into one using ⊕

with an empty digraph as the initial value.

The server in XJupiter broadcasts the transformed

operation xform.xcop (instead of cop that it receives)

to clients. Thus, the clients can skip the OTs trans-

forming cop to xform.xcop performed at the server.

To simulate the n-ary digraph css[c] at client c in

1358 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Organized into n-Ary Digraph

Optimization at Clients

Local Dimension at Clients

Remote Dimension at the Server

AbsJupiter

AbsJupiter

CJupiter CJupiter

x
1 x

1

ax
13

xb
14 xb

14

a
123 a

123

b
124

b
124

ba
1234

ba
1234

12
12

Fig.20. Illustration of the data refinement relation among Jupiter protocols (taking client c3 in Fig.1 as an example). First, context-
based operations with the same context of AbsJupiter are connected to the same node in the digraph of CJupiter. Second, the redundant
OTs performed at the server have been optimized away from the digraph of XJupiter. Finally, only the transformed operations along
the local dimension of the digraph of XJupiter are kept in the buffer of AJupiter.

CJupiterImplAbsJupiter

Fig.21. TLA+ module CJupiterImplAbsJupiter.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1359

XJupiterImplCjupiter

We have omitted the history variables for recording serial views.

a function mapping an operation (identifier)

to the 2D digraph produced during its transformation at the server

cssX♭c♯: 2D digraph that has been skipped by client c

on history variables for serial views

on history variables for serial views

on history variables for serial views

on history variables for serial views

the empty function expressed in TLA+

Fig.22. TLA+ module XJupiterImplCJupiter.

CJupiter using the 2D digraph c2ss[c] in XJupiter, we

need to complement c2ss[c] with those OTs skipped

by XJupiter. To this end, we introduce two his-

tory variables in XJupiterImplCJupiter to record OTs.

The variable op2ss is a function mapping an ope-

ration (identifier) to the extra 2D digraph produced

during its transformation at the server. When an

operation cop is transformed at the server, the new

mapping cop.oid :> xform.xg is added to op2ss (see

SRevImpl(cop)). When client c receives the trans-

formed operation xform.xcop broadcast by the server,

it accumulates this extra 2D digraph op2ss[cop.oid] into

c2ssX [c], the overall 2D digraph that has been skipped

by client c (see RevImpl(c, cop)). Thus, for client c,

the simulation between css[c] and c2ss[c] can be (con-

ceptually) expressed as css[c]← c2ss[c]⊕ c2ssX [c].

5.3 AJupiter Refines XJupiter

AJupiter uses 1D buffers to replace 2D digraphs

in XJupiter, by keeping only the latest operation se-

quences that should participate in further OTs and

discarding the old ones and intermediate transformed

operations. Therefore, the refinement mapping needs

to reconstruct these 2D digraphs in XJupiter from the

OTs performed on 1D buffers in AJupiter. To this

end, we introduce two history variables c2ss and s2ss

in AJupiterImplXJupiter (Fig.23) which are to simu-

late c2ss and s2ss in XJupiter, respectively. They

are supposed to be updated in accordance with cbuf

and sbuf of AJupiter. Specifically, in DoImpl(c, op),

the generated operation op is wrapped as a context-

based operation cop and added to c2ss[c] as in XJupiter;

besides it is stored in cbuf [c] as in AJupiter (not

shown here). In RevImpl(c,m) and SRevImpl(m),

xFormCopCopsShift behaves as xFormShift and

xFormOpOps used in AJupiter, except that the former

performs COT s on context-based operations and stores

intermediate nodes and edges produced during COT s

into c2ss[c] and s2ss as in XJupiter, respectively.

6 Model Checking Results

We first present the model checking results of veri-

fying the refinement relation among Jupiter protocols.

Thanks to the refinement relation, we then only need

to verify AbsJupiter with respect to desired properties

to ensure the correctness of all Jupiter protocols.

Verification by model checking is conducted by

TLC [16] (implemented in the TLA+ Toolbox of version

1.5.7), a model checker for TLA+, on a 2.40 GHz 6-core

machine with 64 GB RAM. For each group of model

checking experiments, we vary the number of clients

1360 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

AJupiterImplXJupiter

Fig.23. TLA+ module AJupiterImplXJupiter.

and the number of characters allowed to be inserted 9○.

We use the symmetry set [15] for the set Char of char-

acters. The initial lists on all replicas are empty. We

use 10 threads and report the following statistics: the

diameter of the reachable-state graph (i.e., the length of

the longest behavior of protocol), the number of states

TLC examines, the number of distinct states, and the

checking time in hh:mm:ss.

6.1 Verifying Refinement Relation Among
Jupiter Protocols

We verify the refinement mapping AbsJ

from CJupiter to AbsJupiter defined in

CJupiterImplAbsJupiter by checking that each beha-

vior of CJupiter with variables substituted by AbsJ is

a behavior allowed by AbsJupiter. The model check-

ing results are shown in Table 3 10○. Similar results

on verification of the refinement mappings defined in

XJupiterImplCJupiter and AJupiterImplXJupiter

are shown in Table 4 and Table 5, respectively.

6.2 Verifying Correctness of Jupiter Protocols

We present the model checking results of verify-

ing that AbsJupiter satisfies the weak list specification

WLSpec [2]. To express WLSpec in TLA+, we intro-

duce module AbsJupiterH (Fig.24) which extends Ab-

sJupiter with a history variable hlist [13]. AbsJupiterH

behaves exactly as AbsJupiter, except that it collects

the new list state list′[r] in each action into hlist. We

9○The positive model checking results help to gain great confidence in the correctness of these Jupiter protocols and the refinement
relation among them, given the empirical study [21] that “almost all failures (of 198 production failures in distributed data-intensive
systems) require only three or fewer nodes to reproduce”. In our experiments, with some configurations such as (3, 2), we are able to
explore the behaviors of the protocol with a diameter of the length greater than 30 and with more than 200 million states.

10○In the table, “#x” means “the number of x”. Additionally, in a “starred” experiment, we exit TLC when the number of distinct
states it examines reaches a threshold θ. This is supported by a TLA+ Toolbox nightly build as of 01-28-2019 (at 05:56).

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1361

Table 3. Model Checking Results of Verifying That CJupiter Refines AbsJupiter

TLC Model (#Clients, #Chars) Diameter #States #Distinct States Checking Time (hh:mm:ss)

(1, 1) 5 7 6 00 : 00 : 00

(1, 2) 9 86 57 00 : 00 : 00

(1, 3) 13 1 696 1 014 00 : 00 : 01

(1, 4) 17 53 273 30 393 00 : 00 : 06

(2, 1) 10 71 53 00 : 00 : 01

(2, 2) 19 50 215 28 307 00 : 00 : 05

(2, 3) 28 150 627 005 75 726 121 04 : 37 : 36

(2, 4) 18 121 964 031 θ = 80 000 000⋆ 05 : 21 : 04

(3, 1) 17 2 785 1 288 00 : 00 : 01

(3, 2) 33 206 726 218 74 737 027 05 : 43 : 26

(3, 3) 18 139 943 577 θ = 80 000 000⋆ 05 : 18 : 57

(4, 1) 26 194 877 61 117 00 : 00 : 18

(4, 2) 21 177 451 069 θ = 80 000 000⋆ 06 : 12 : 48

Table 4. Model Checking Results of Verifying That XJupiter Refines CJupiter

TLC Model (#Clients, #Chars) Diameter #States #Distinct States Checking Time (hh:mm:ss)

(1, 1) 5 7 6 00 : 00 : 00

(1, 2) 9 86 57 00 : 00 : 00

(1, 3) 13 1 696 1 014 00 : 00 : 01

(1, 4) 17 53 273 30 393 00 : 00 : 07

(2, 1) 10 71 53 00 : 00 : 00

(2, 2) 19 50 215 28 307 00 : 00 : 07

(2, 3) 28 150 627 005 75 726 121 05 : 38 : 00

(2, 4) 19 122 113 291 θ = 80 000 000⋆ 08 : 01 : 35

(3, 1) 17 2 785 1 288 00 : 00 : 02

(3, 2) 33 206 726 218 74 737 027 08 : 50 : 40

(3, 3) 20 139 577 795 θ = 80 000 000⋆ 08 : 59 : 52

(4, 1) 26 194 877 61 117 00 : 00 : 30

(4, 2) 19 175 896 403 θ = 80 000 000⋆ 11 : 40 : 50

Table 5. Model Checking Results of Verifying That AJupiter Refines XJupiter

TLC Model (#Clients, #Chars) Diameter #States #Distinct States Checking Time (hh:mm:ss)

(1, 1) 5 7 6 00 : 00 : 01

(1, 2) 9 86 57 00 : 00 : 01

(1, 3) 13 1 696 1 014 00 : 00 : 01

(1, 4) 17 53 273 30 393 00 : 00 : 07

(2, 1) 10 71 53 00 : 00 : 00

(2, 2) 19 50 215 28 307 00 : 00 : 05

(2, 3) 28 150 627 005 75 726 121 04 : 23 : 52

(2, 4) 18 122 137 621 θ = 80 000 000⋆ 03 : 52 : 46

(3, 1) 17 2 785 1 288 00 : 00 : 01

(3, 2) 33 206 726 218 74 737 027 04 : 52 : 39

(3, 3) 18 139 823 551 θ = 80 000 000⋆ 04 : 48 : 23

(4, 1) 26 194 877 61 117 00 : 00 : 17

(4, 2) 21 176 794 063 θ = 80 000 000⋆ 03 : 49 : 58

check that WLSpec is an invariant of AbsJupiterH us-

ing TLC, and the model checking results are shown in

Table 6.

7 Related Work

OT was pioneered by Sun and Ellis in 1989 [1].

Though the idea of OT is simple, OT-based proto-

cols are subtle and error-prone. For example, the

dOPT protocol in [1] for P2P systems does not work

in all cases [7, 8]. Remarkably, after several failed

attempts [8, 9, 22], it was shown impossible [10, 11] to de-

sign OT functions (and thus OT-based protocols) for

P2P systems for lists with signatures of Ins and Del

as described in Subsection 2.3. In other words, extra

1362 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

AbsJupierH

Fig.24. TLA+ module AbsJupierH.

Table 6. Model Checking Results of Verifying that AbsJupiter Satisfies WLSpec

TLC Model (#Clients, #Chars) Diameter #States #Distinct States Checking Time (hh:mm:ss)

(1, 1) 5 7 6 00 : 00 : 01

(1, 2) 9 86 57 00 : 00 : 01

(1, 3) 13 1 696 1 014 00 : 00 : 00

(1, 4) 17 53 273 30 393 00 : 00 : 04

(2, 1) 10 71 53 00 : 00 : 00

(2, 2) 19 50 215 28 307 00 : 00 : 03

(2, 3) 28 150 627 005 75 726 121 01 : 54 : 46

(2, 4) 20 153 275 009 θ = 100 000 000⋆ 03 : 54 : 49

(3, 1) 17 2 785 1 288 00 : 00 : 01

(3, 2) 33 206 726 218 74 737 027 02 : 46 : 02

(3, 3) 25 175 457 016 θ = 100 000 000⋆ 02 : 59 : 29

(4, 1) 26 194 877 61 117 00 : 00 : 09

(4, 2) 22 222 738 876 θ = 100 000 000⋆ 03 : 16 : 45

parameters are needed for Ins and Del operations [11].

On the other hand, researchers made efforts to gain

a better understanding why some OT-based protocols

work [4, 20].

The first Jupiter protocol appeared in 1995 [3] and is

now used in many collaborative editors such as Google

Docs 11○, Firepad, and SubEthaEdit. However, its orig-

inal description involves only a single client. Based on

the notion of COT Xu et al. [4] developed before [20],

they reported a multi-client version of Jupiter, which

we call XJupiter. XJupiter uses 2D digraphs to manage

COTs. Independently, Attiya and Gotsman described

another multi-client version of Jupiter, which we call

AJupiter 12○. AJupiter relies on the acknowledgment

mechanism and uses 1D buffers to manage OTs, thus

reducing the metadata overhead. To facilitate the proof

that XJupiter satisfies the weak list specification [2], Wei

et al. [6] proposed CJupiter (Compact Jupiter), which

is equivalent to XJupiter. CJupiter is compact in the

sense that at a high level, it maintains only a single

n-ary digraph that encompasses all replica states.

Much work has been devoted to formal verification

of OT functions for lists or trees [9, 10, 23–25]. In con-

trast, little has been done on the formal verification of

complete OT-based protocols. To our knowledge, we

are the first to formally specify and verify a family of

OT-based Jupiter protocols and the refinement relation

among them.

8 Conclusions

We studied a family of OT-based Jupiter protocols

for replicated lists. Since OT-based protocols are subtle

and error-prone, our work would be helpful to promote

a rigorous study of them. We also proposed the Ab-

sJupiter protocol, which addresses the key OT issue in

an abstract way. It will be helpful for studying the

relation among more OT-based Jupiter protocols.

We will develop a mechanical correctness proof for

our AbsJupiter protocol with respect to both strong

eventual consistency and weak list specification using

11○What’s different about the new Google Docs: Making collaboration fast. https://drive.googleblog.com/2010/09/whats-different-
about-new-google-docs.html, Sept. 2020.

12○Attiya H, Gotsman A. Personal communication, 2017. They wrote a note about AJupiter, but have not published it.

Heng-Feng Wei et al.: Jupiter Made Abstract, and Then Refined 1363

TLAPS 13○, a proof system for TLA+. Then we will

extend our work to OT-based protocols for replicated

lists for P2P systems. In particular, we will study the

COT protocol [20] for P2P systems that has inspired us

to propose AbsJupiter for client/server systems.

References

[1] Ellis C A, Gibbs S J. Concurrency control in groupware

systems. In Proc. the 1989 ACM SIGMOD International

Conference on Management of Data, May 1989, pp.399-

407.

[2] Attiya H, Burckhardt S, Gotsman A, Morrison A, Yang H,

Zawirski M. Specification and complexity of collaborative

text editing. In Proc. the 2016 ACM Symposium on Prin-

ciples of Distributed Computing, July 2016, pp.259-268.

[3] Nichols D A, Curtis P, Dixon M, Lamping J. High-latency,

low-bandwidth windowing in the Jupiter collaboration sys-

tem. In Proc. the 8th Annual ACM Symposium on User In-

terface and Software Technology, November 1995, pp.111-

120.

[4] Xu Y, Sun C, Li M. Achieving convergence in operational

transformation: Conditions, mechanisms and systems. In

Proc. the 17th ACM Conference on Computer Supported

Cooperative Work, February 2014, pp.505-518.

[5] Shapiro M, Preguiça N, Baquero C, Zawirski M. Conflict-

free replicated data types. In Proc. the 13th International

Conference on Stabilization, Safety, and Security of Dis-

tributed Systems, October 2011, pp.386-400.

[6] Wei H, Huang Y, Lu J. Specification and implementation of

replicated list: The Jupiter protocol revisited. In Proc. the

22nd International Conference on Principles of Distributed

Systems, December 2018, Article No. 12.

[7] Sun C, Ellis C. Operational transformation in real-time

group editors: Issues, algorithms, and achievements. In

Proc. the 1998 ACM Conference on Computer Supported

Cooperative Work, November 1998, pp.59-68.

[8] Ressel M, Nitsche-Ruhland D, Gunzenhäuser R. An inte-

grating, transformation-oriented approach to concurrency

control and undo in group editors. In Proc. the 1996 ACM

Conference on Computer Supported Cooperative Work,

November 1996, pp.288-297.

[9] Imine A, Rusinowitch M, Oster G, Molli P. Formal design

and verification of operational transformation algorithms

for copies convergence. Theor. Comput. Sci., 2006, 351(2):

167-183.

[10] Randolph A, Boucheneb H, Imine A, Quintero A. On consis-

tency of operational transformation approach. In Proc. the

14th International Workshop on Verification of Infinite-

State Systems, August 2012, pp.45-59.

[11] Randolph A, Boucheneb H, Imine A, Quintero A. On syn-

thesizing a consistent operational transformation approach.

IEEE Trans. Computers, 2015, 64(4): 1074-1089.

[12] Hoare C A. Proof of correctness of data representations.

Acta Inf., 1972, 1(4): 271-281.

[13] Lamport L, Merz S. Auxiliary variables in TLA+.

arXiv:1703.05121, 2017. https://arxiv.org/pdf/1703.051-

21.pdf, Sept. 2020.

[14] Lamport L. If you’re not writing a program, don’t use a

programming language. Bulletin of the EATCS, 2018, 125:

Article No. 7.

[15] Lamport L. Specifying Systems: The TLA+ Language and

Tools for Hardware and Software Engineers (1st edition).

Addison-Wesley Professional, 2002.

[16] Yu Y, Manolios P, Lamport L. Model checking TLA+ spec-

ifications. In Proc. the 10th IFIP WG 10.5 Advanced Re-

search Working Conference on Correct Hardware Design

and Verification Methods, September 1999, pp.54-66.

[17] Hong W, Chen Z, Yu H, Wang J. Evaluation of model

checkers by verifying message passing programs. SCI-

ENCE CHINA Information Sciences, 2019, 62(10): Article

No. 200101.

[18] Lamport L. The temporal logic of actions. ACM Trans.

Program. Lang. Syst., 1994, 16(3): 872-923.

[19] Abadi M, Lamport L. The existence of refinement map-

pings. Theor. Comput. Sci., 1991, 82(2): 253-284.

[20] Sun D, Sun C. Context-based operational transformation

in distributed collaborative editing systems. IEEE Trans.

Parallel Distrib. Syst., 2009, 20(10): 1454-1470.

[21] Yuan D, Luo Y, Zhuang X, Rodrigues G R, Zhao X, Zhang

Y, Jain P U, Stumm M. Simple testing can prevent most

critical failures: An analysis of production failures in dis-

tributed data-intensive systems. In Proc. the 11th USENIX

Conference on Operating Systems Design and Implementa-

tion, October 2014, pp.249-265.

[22] Li D, Li R. An approach to ensuring consistency in peer-to-

peer real-time group editors. Computer Supported Cooper-

ative Work, 2008, 17(5/6): 553-611.

[23] Liu Y, Xu Y, Zhang S J, Sun C. Formal verification of op-

erational transformation. In Proc. the 19th International

Symposium on Formal Methods, May 2014, pp.432-448.

[24] Sun C, Xu Y, Agustina A. Exhaustive search of puzzles in

operational transformation. In Proc. the 17th ACM Confe-

rence on Computer Supported Cooperative Work, February

2014, pp.519-529.

[25] Sinchuk S, Chuprikov P, Solomatov K. Verified operational

transformation for trees. In Proc. the 7th International

Conference on Interactive Theorem Proving, August 2016,

pp.358-373.

Heng-Feng Wei received his B.S.

and Ph.D. degrees in computer sci-

ence and technology from Nanjing

University, Nanjing, in 2009 and 2016,

respectively. He is currently an assis-

tant professor with the Department of

Computer Science and Technology and

the State Key Laboratory for Novel

Software Technology at Nanjing University, Nanjing.

His research interests include distributed computing and

formal methods. He is a member of CCF.

13○Microsoft Research — Inria Joint Centre: TLA+ Proof System (TLAPS). https://tla.msr-inria.inria.fr/tlaps/content/Home.h-
tml, Sept. 2020.

1364 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Rui-Ze Tang received his B.S. de-

gree in computer science and technology

from Nanjing University, Nanjing, in

2019. He is currently a Ph.D. candidate

with the Department of Computer

Science and Technology and the State

Key Laboratory for Novel Software

Technology at Nanjing University,

Nanjing. His research interests include distributed systems

and formal methods.

Yu Huang received his B.S. and

Ph.D. degrees in computer science

from the University of Science and

Technology of China, Hefei, in 2002

and 2007, respectively. He is currently

a professor with the Department of

Computer Science and Technology and

the State Key Laboratory for Novel

Software Technology at Nanjing University, Nanjing. His

research interests include distributed algorithms, dis-

tributed systems, formal methods, and system reliability.

He is a member of CCF.

Jian Lv received his Ph.D. degree

in computer science and technology

from Nanjing University, Nanjing.

He is currently a professor with the

Department of Computer Science and

Technology and the director of the

State Key Laboratory for Novel Soft-

ware Technology at Nanjing University,

Nanjing. He has served as a vice chairman of the China

Computer Federation (CCF) since 2011. His research

interests include software methodologies, automated

software engineering, and middleware systems. He is a

fellow of CCF and a member of ACM.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

Volume 35, Number 6, November 2020

Special Section on Software Systems 2020 — Part 2

Preface . Tao Xie (1231)

ProSy: API-Based Synthesis with Probabilistic Model .

. Bin-Bin Liu, Wei Dong, Jia-Xin Liu, Ya-Ting Zhang, and Dai-Yan Wang (1234)

Learning Human-Written Commit Messages to Document Code Changes .

. Yuan Huang, Nan Jia, Hao-Jie Zhou, Xiang-Ping Chen, Zi-Bin Zheng, and Ming-Dong Tang (1258)

Automatically Identifying Calling-Prone Higher-Order Functions of Scala Programs to Assist Testers .

. Yi-Sen Xu, Xiang-Yang Jia, Fan Wu, Lingbo Li, and Ji-Feng Xuan (1278)

Reachability of Patterned Conditional Pushdown Systems. Xin Li, Patrick Gardy, Yu-Xin Deng, and Hiroyuki Seki (1295)

Specification and Verification of the Zab Protocol with TLA+ Jia-Qi Yin, Hui-Biao Zhu, and Yuan Fei (1312)

Modelling and Verification of Real-Time Publish and Subscribe Protocol Using UPPAAL and Simulink/Stateflow

. Qian-Qian Lin, Shu-Ling Wang, Bo-Hua Zhan, and Bin Gu (1324)

Jupiter Made Abstract, and Then Refined . Heng-Feng Wei, Rui-Ze Tang, Yu Huang, and Jian Lv (1343)

Verifying ReLU Neural Networks from a Model Checking Perspective .

. Wan-Wei Liu, Fu Song, Tang-Hao-Ran Zhang, and Ji Wang (1365)

Modular Verification of SPARCv8 Code . Jun-Peng Zha, Xin-Yu Feng, and Lei Qiao (1382)

Automatic Buffer Overflow Warning Validation. .

. Feng-Juan Gao, Yu Wang, Lin-Zhang Wang, Zijiang Yang, and Xuan-Dong Li (1406)

Predicting Code Smells and Analysis of Predictions: Using Machine Learning Techniques and Software Metrics

. Mohammad Y. Mhawish and Manjari Gupta (1428)

Regular Paper

Neural Explainable Recommender Model Based on Attributes and Reviews .

. Yu-Yao Liu, Bo Yang, Hong-Bin Pei, and Jing Huang (1446)

Topic Modeling Based Warning Prioritization from Change Sets of Software Repository. .

. Jung-Been Lee, Taek Lee, and Hoh Peter In (1461)

2020 Contents . (1480)

2020 Author Index . (1484)

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY5O�Å�ÆEâÆ�6
Volume 35 Number 6 2020 (Bimonthly, Started in 1986)

Indexed in: SCIE, Ei, INSPEC, JST, AJ, MR, CA, DBLP

Edited by:

THE EDITORIAL BOARD OF JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

Zhi-Wei Xu, Editor-in-Chief, P.O. Box 2704, Beijing 100190, P.R. China

Managing Editor: Feng-Di Shu E-mail: jcst@ict.ac.cn http://jcst.ict.ac.cn Tel.: 86-10-62610746

Copyright c©Institute of Computing Technology, Chinese Academy of Sciences 2020

Sponsored by: Institute of Computing Technology, CAS & China Computer Federation

Supervised by: Chinese Academy of Sciences

Undertaken by: Institute of Computing Technology, CAS

Published by: Science Press, Beijing, China

Printed by: Beijing Kexin Printing House

Distributed by:

China: All Local Post Offices

Other Countries: Springer Nature Customer Service Center GmbH, Tiergartenstr. 15, 69121 Heidelberg, Germany

Available Online: https://link.springer.com/journal/11390ISÚ�rÒ: CN11-2296/TP ISeu�Ò: 2-578 RMB U150.00

	JCST COVER 2020-35-6
	2020-6-8-0516
	2020-6ml

