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Abstract—A consistency/latency tradeoff arises as soon as a distributed storage system replicates data. For low latency, distributed
storage systems often settle for weak consistency conditions, providing little guarantee on data consistency. In this paper, we propose
the notion of almost strong consistency as an option for the consistency/latency tradeoff. It provides both deterministically bounded
staleness of data versions for reads and probabilistic quantification on the rate of “reading stale data”, while achieving low latency. We
then investigate almost strong consistency in terms of probabilistically-atomic 2-atomicity. Our PA2AM algorithm for the single-writer
model completes each read in one communication round-trip, and guarantees that each read obtains the value of within the latest two
versions. To quantify the rate of “reading the stale version”, we decompose the so-called “old-new inversion” anomaly into long-lived-
write concurrency patterns and non-monotonic read-write patterns, and propose a queueing model and a timed balls-into-bins model to
analyze them, respectively. The probabilistic analysis not only demonstrates that old-new inversions rarely occur, but also reveals that
the read-write pattern dominates in preventing them from occurring. These are then supported by our experiments. To further
demonstrate the benefits of probabilistically-atomic 2-atomicity, we also compare it to weak consistency conditions.

Index Terms—AImost strong consistency, probabilistically-atomic 2-atomicity, consistency/latency tradeoff, bounded staleness, quantifying

consistency conditions

1 INTRODUCTION

DISTRIBUTED storage systems [1], [2], [3], [4] underlying
today’s Internet services are expected to be fast, always
available, highly scalable, and partition tolerant. To this end,
they typically replicate data across machines and even data-
centers, at the expense of introducing data inconsistency.

As soon as a storage system replicates data, a tradeoff
between consistency and latency arises [5]. This consis-
tency/latency tradeoff arguably has been highly influential
in system design as it exists even when there are no network
partitions [5]. In distributed storage systems, latency is
widely regarded as a critical factor for a large class of appli-
cations. For instance, the experiments from Google [6] dem-
onstrate that increasing web search latency 100 to 400 ms
reduces the daily number of searches per user by 0.2 to 0.6
percent. Thus, most storage systems are designed for low
latency in the first place. They often sacrifice strong consis-
tency and settle for weaker ones, such as eventual consis-
tency [2], [7], per-record timeline consistency [3], and causal
consistency [8]. However, such weak consistency conditions
usually provide little, or even worse, no guarantee on data
consistency. Specifically, they neither make any determin-
istic guarantee on the staleness of the data returned by reads
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nor provide probabilistic hints on the rate of violations with
respect to the desired strong consistency.

In this paper we propose the notion of almost strong con-
sistency as an option for the consistency/latency tradeoff.
Though low latency is highly desirable in practical systems,
there are usually theoretical lower bounds on the achievable
latency to assure strong consistency conditions [9], [10], [11],
[12]. Here a natural question arises: “What (strong) consis-
tency condition can be achieved if low latency is a prerequisite?”.
Inspired by this question, almost strong consistency first
demands an implementation with low latency, thus circum-
venting the theoretical lower bounds, but at the cost of data
inconsistency. On the other hand, to prevent from sacrific-
ing too much consistency, it requires deterministically
bounded staleness of data versions for each read. Therefore,
the users are confident that out-of-date data is still useful as
long as they can tolerate certain staleness. Furthermore, it
provides a probabilistic quantification on the low rate of
“reading stale data”. This ensures that the users are actually
accessing up-to-date data most of the time.

We illustrate the idea of almost strong consistency with
two scenarios. First, in the taxi transportation system, each
taxi periodically reports its location data to the data server.
Due to the natural locality of the update and request of loca-
tion data, the city is partitioned into multiple areas and a data
server is deployed in each area. The location data is replicated
among all the data servers. This way the users all over the city
can request the location data via a mobile application like
Uber [13]. Though consistency is a desirable property, the
user may be more concerned about how long he has to wait
before his query can be served. Thus, the application may
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trade certain consistency for low latency, as long as the incon-
sistency is bounded and the application can still access up-to-
date data most of the time [14]. Second, we consider a loca-
tion-based mobile application, called “meet-up”, that helps a
group of people meet at some place, such as a restaurant, at
the appointed time. People involved in these situations are
often eager to know where everyone else is right now. Thus
they participate, through their mobile phones, in a peer-to-
peer network. The location of each phone is replicated at all
the phones in the network. Each phone updates its location at
its own rate and every phone is able to access the data at any
time. Stale location data is acceptable as long as the staleness
is deterministically bounded at a low level. Moreover, a high
probabilistic guarantee of obtaining the latest data for each
read would be quite desirable.

In distributed (key-value) storage systems, we investi-
gate the generic notion of almost strong consistency in terms
of probabilistically-atomic 2-atomicity," with respect to atomic-
ity [15] (a.k.a linearizability [16]). Atomicity is an ideally
strong consistency condition, requiring each read to return
the latest data version. Unfortunately, it has been theoreti-
cally proved that atomicity generally does not admit low-
latency implementations, that complete each read operation in
one communication round-trip [10]. For example, the ABD
algorithm [17] for emulating atomic registers requires each
read to complete in two round-trips. First of all, probabilisti-
cally-atomic 2-atomicity, as an option for the consistency/
latency tradeoff, circumvents this impossibility result by
giving priority to low latency and achieving as strong con-
sistency as possible.

Second, with low latency in the first place, probabilisti-
cally-atomic 2-atomicity enforces the 2-atomicity semantics,
which is a special case of k-atomicity [18] and guarantees
that the value returned by each read is of one of the latest
two versions. In our transportation system example, the taxi
location data can still be useful if the data returned is no
more stale than the previous version to the latest one. This
is mainly because the location data cannot change abruptly
and the taxi frequently updates its location.

Third, probabilistically-atomic 2-atomicity provides a
probabilistic quantification on the rate of violations of atom-
icity, another perspective for expressing how strong consis-
tency is “almost” guaranteed. In our transportation system
example, since the user may request the location data of a
number of taxies, the inconsistent data may not affect the
quality of service experienced by the user, as long as only a
small portion of the query return slightly stale data.

As required, our PA2AM algorithm guarantees 2-atomic-
ity and completes each read in one round-trip. To quantify the
rate of atomicity violations incurred in the PA2AM algorithm,
we decompose the so-called old-new inversion anomaly [10],
[19] into two patterns: Long-lived-write concurrency pattern
and non-monotonic read-write pattern. We then propose a
stochastic queueing model and a timed balls-into-bins model
to analyze the two patterns, respectively. The probabilistic
analysis not only demonstrates that old-new inversions rarely
occur as expected, but also reveals that the read-write pattern
dominates in preventing them from occurring.

1. Our use of “atomicity” concerns correctness of concurrent objects.
Do not confuse it with the all-or-none property in transactions.

[ Clients processes (po, 1, -+, PN-1)
ack(value) ack ack(vialue)
read(key) write (key,value) read(key)
Replica rq: Replica r;: Replica 7,—1:
local registers local registers local registers
algorithm algorithm algorithm
receive receive receive
send send send
Message Passing System (network) J

Fig. 1. Distributed (key-value) storage system model.

We have implemented a prototype distributed storage
system among mobile phones, which provides 2-atomic
data access based on the PA2AM algorithm and atomic data
access on the ABD algorithm. The read latencies in our
PA2AM algorithm have been significantly reduced, com-
pared to those in the ABD algorithm. More importantly, the
experimental results have supported our probabilistic anal-
ysis. Specifically, the proportion of old-new inversions
incurred in the PA2AM algorithm is typically less than 0.01
percent. Furthermore, the proportion of read-write patterns
among concurrency patterns (e.g., about 0.01 percent in
some setting) is much less than that of concurrency patterns
themselves (e.g., more than 50 percent in the same setting).

By comparing probabilistically-atomic 2-atomicity to
weak consistency conditions, we find that probabilistically-
atomic 2-atomicity brings the best of both worlds: it shares
the performance advantage of weak consistency such as
eventual consistency, and it has the statistically “almost
strong” feature with respect to strong consistency, namely,
atomicity. Thus, probabilistically-atomic 2-atomicity would
be arguably as valuable an addition to the consistency/
latency spectrum.

The paper is organized as follows. Section 2 proposes the
generic notion of almost strong consistency and investigates
it in terms of probabilistically-atomic 2-atomicity. Section 3
presents the low-latency PA2AM algorithm which satisfies
2-atomicity. Section 4 quantifies the atomicity violations
incurred in the PA2AM algorithm. Section 5 presents the
prototype storage system and experimental results. Section 6
reviews the related work. Section 7 concludes.

2 ALMOST STRONG CONSISTENCY

In this section, we propose the generic notion of almost
strong consistency, and instantiate it in terms of probabilis-
tically-atomic 2-atomicity, in distributed storage systems.

2.1 Generic Notion of Almost Strong Consistency
The distributed storage system consists of a fixed number n
of replicas that communicate through message passing
(Fig. 1). Each replica maintains a subset of replicated key-
value pairs (also referred to as registers). That is, we assume
the partial replication model.

The distributed storage system supports two kinds of
operations to an arbitrary (but finite) number of N clients: 1)
storing a value associated with a key, denoted write(key,
value); and 2) retrieving a value associated with a key,
denoted walue <« read(key). (The system model has
decoupled the roles of replicas and clients, thus covering
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both scenarios described in Section 1.) Being replicated, dif-
ferent versions of the same register may co-exist in the dis-
tributed storage system. The concept of consistency
conditions is then introduced to constrain the possible data
versions that are allowed to be returned by each read. Partic-
ularly, strong consistency requires each read to obtain the
latest data version according to some sequential order (dis-
cussed later in Section 2.2).

Being an option for the consistency/latency tradeoff, the
notion of almost strong consistency generalizes the traditional
strong consistency in three aspects:

1) It demands an implementation with low latency,
thus circumventing the theoretical lower bounds on
latency, but at the cost of data inconsistency.

2) It provides deterministically bounded staleness of
data versions for each read; and

3) It also provides a probabilistic quantification on the
rate of “reading stale data”.

We emphasize that the generic notion of almost strong
consistency not only specifies the allowable behavior of
each read as the traditional consistency conditions do, but
also is concerned with performance and analytical aspects
of protocols.

2.2 Almost Strong Consistency in Terms of
Probabilistically-Atomic 2-Atomicity

In distributed (key-value) storage systems, we investigate
almost strong consistency in terms of probabilistically-atomic
2-atomicity. As preliminaries, we first review atomicity [20],
focusing on read/write registers. From the view of clients,
each operation is associated with two events: an invocation
event and a response event. For a read (on a specific key), the
invocation is denoted read(key), and its response has the
form ack(value), returning some value to the client. For a
write, the invocation is denoted write(key, value), and its
response is an ack, indicating its completion. We consider
an asynchronous system, meaning that there is no real
global time available to either the clients or the replicas.
However, for specification, correctness proof, and offline
analysis, we assume an imaginary global clock and all the
events are time-stamped with respect to it [15]. Among all
the writes, we posit, for each register, the existence of a spe-
cial one which writes the initial value, at the very beginning
of the imaginary global clock.

An execution o of a distributed storage system is a
sequence of invocations and responses. An operation o; pre-
cedes another operation o,, denoted o; <, 02 (or 0 < 03 if &
is clear from the context), if and only if the response of o;
occurs in o before the invocation of 0,. Two operations are
considered concurrent (or called, overlapping) if neither of
them precedes the other. An execution o is said to be well-
formed if each client invokes at most one operation at a time,
that is, for each client p;, o]i (the subsequence of o restricted
on p;) consists of alternating invocations and matching
responses, beginning with an invocation. A well-formed
execution o is sequential if for each operation in o, its invoca-
tion is immediately followed by its response.

Intuitively, atomicity requires each operation to appear
to take effect instantaneously at some point between its
invocation and its response. More precisely,
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Definition 2.1. A distributed storage system satisfies atomicity
[20] if, for each of its well-formed executions o, there exists a
permutation w of all the operations in o such that w is sequen-
tial and

o [real-time requirement] If oy <, o, then o) appears
before o, in w; and

o [read-from requirement| Each read returns the value
written by the most recently preceding write in 7w on
the same key.

A distributed storage system is also said to emulate
atomic registers if it satisfies atomicity.

As discussed in Section 1, atomicity does not admit low-
latency implementations [10]. This impossibility result justi-
fies the semantics of 2-atomicity, which is a special case of
k-atomicity [18].

Definition 2.2. A distributed storage system satisfies 2-atomicity
[18] if, for each of its well-formed executions o, there exists a per-
mutation w of all the operations in o such that  is sequential and

o [real-time requirement] If oy <, o, then o) appears
before oy in 7r; and

o [weak read-from requirement| Each read returns the
value written by one of the latest two preceding writes
in v on the same key.

Similarly, a distributed storage system is also said to emu-
late 2-atomic registers if it satisfies 2-atomicity.

Probabilistically-atomic  2-atomicity instantiates
generic notion of almost strong consistency as follows.

the

Definition 2.3. Probabilistically-atomic 2-atomicity consists of
three parts:

1) It demands a low-latency implementation, thus cir-
cumventing the impossibility result on read latency
required for atomicity [10], but at the cost of data
inconsistency.

2) It enforces 2-atomicity, guaranteeing that each read
obtains the value of within the latest two versions.

3) It provides a probabilistic quantification on the rate of
actually reading the stale data version.

Section 3 presents a low-latency implementation for
2-atomicity, meeting the first two conditions of probabilisti-
cally-atomic 2-atomicity. Section 4 quantifies its atomicity
violations, meeting the third condition.

3 ACHIEVING PROBABILISTICALLY-ATOMIC
2-ATOMICITY

We present the PA2AM algorithm, a low-latency implemen-
tation for 2-atomicity, that meets the first two requirements
of probabilistically-atomic 2-atomicity. Specifically, the
PA2AM algorithm emulates 2-atomic, single-writer multi-
reader registers, and completes each read in one round-trip.
We highlight that the PA2AM algorithm and its probabilis-
tic analysis in Section 4 are only for the single-writer model,
and we discuss the multi-writer model in Section 7.

Despite its simplicity, (atomic,) single-writer registers are
of both practical and theoretical interests. In practice, they
are particularly suitable for a kind of applications, where
the shared data has its natural “owner”. The system state as
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a whole is composed of multiple single-writer registers.
Each register is associated with a single user, the only one
who can write it. All users can read all registers. Typical sce-
narios include the taxi transportation system and the “meet-
up” application described in Section 1. Theoretically,
atomic, single-writer registers are computationally equiva-
lent to atomic, multi-writer registers [20]. Furthermore, sin-
gle-writer registers are powerful enough to solve some
classical synchronization problems [20] in which multiple
processes communicate by writing their own registers and
reading others’.

3.1 The PA2AM Algorithm

We use the asynchronous, crash-stop failure model, in
which: 1) Each communication channel is reliable and FIFO.
This can be easily built on top of a basic message-passing
network where messages can be delayed, lost, or delivered
out of order, but they are not corrupted, e.g., by following
the “communicate” procedure in [17]; and 2) Any subset of
clients and a minority of replicas may crash.

The PA2AM algorithm is adapted straightforward from
the ABD algorithm (specifically, the unbounded emulator)
in [17] for atomicity. It makes use of versioning, and relies
on the majority communication rule that requires each read/
write operation to contact all the replicas and wait for
acknowledgments from a majority of them before complet-
ing. Specifically,

o write(key, value): To write a value on a specific key,
the single writer first generates a larger version (e.g.,
the next local sequence number) than those it has
ever used, associates it with the key-value pair,
sends the versioned key-value pair to all the replicas
for this key, and waits for acknowledgments from a
majority of them.

o read(key): To read from a specific key, the reader first
queries and collects a set of versioned key-value
pairs from a majority of the replicas for this key,
from which it chooses the one with the largest ver-
sion to return.

Each replica replaces its key-value pair whenever
another one with a larger version from a write is received. It
responds to the queries from reads with the versioned key-
value pair it currently holds.

The pseudo-code for read/fwrite operations and the repli-
cas appears in Algorithm 1. Clearly, we have

Proposition 3.1. The PA2AM algorithm completes each read
operation in one communication round-trip.

The PA2AM algorithm differs from the ABD algorithm
[17] only in the read procedure: Each read of the PA2AM
algorithm does not spend a second round-trip propagating
the returned value (along with its version) to a majority of
the replicas. The second round-trip of read in [17] (often
referred to as the “write back” phase) is required to avoid
old-new inversions, where two non-overlapping reads, both
overlapping a write, obtain out-of-order values [10], [19]. As
proved in the following section, the PA2AM algorithm,
intentionally ignoring the write back phase, indeed achieves
the emulation of 2-atomic, single-writer registers. As far as
we know, this is a new contribution.

Algorithm 1. The PA2AM Algorithm Emulating 2-Atomic,
Single-Writer Registers

1: procedure wriTE(key,value) > for the writer
increment (local) version for this key
pfor each replica s for key > pfor: parallel for
send [UPDATE , key, value, version| to s
wait for [ACK]s from a majority of them
: procedure READ key > for each reader
vals < ()
pfor each replica s for key
send [QUERY, key] to s
v « [k, val, ver] from s
vals « vals U {v}
until a majority of them respond
return val with the largest ver in vals
> Code for replicas below.
[k, val, ver] : local versioned key-value pairs
upon RECEIVE [QUERY, key| from p;
send [k, val, ver] with k = key to client p;
upon RECEIVE [UPDATE , key, value, version] from p;
pick [k, val, ver] with k = key
if ver < wversion then?

val «— value
ver «— version

SARCUE ISR e e

send [Ack] to client p;

3.2 Correctness Proof of the PA2AM Algorithm

We prove that, in the PA2AM algorithm, the value returned
by each read is of within the latest two versions. It is a case-
by-case analysis, concerning the partial order among and
the semantics of read/write operations.

Theorem 3.1. The PA2AM algorithm achieves the emulation of
2-atomic, single-writer multi-reader registers, thus providing
deterministically bounded (i.e., 2) staleness of data versions for
each read.

Proof. First, 2-atomicity is a local property [16], [21], mean-
ing that an execution is 2-atomic if and only if for each
register, the sub-execution of operations on that specific
register is 2-atomic.” Thus we can assume that all the
operations involved in the following correctness proof
are performed on the same register.

According to the definition of 2-atomicity, it suffices to
identify a permutation 7 of any execution of the PA2AM
algorithm, and to prove that 7 is sequential and satisfies
both the “real-time requirement” and the “weak read-
from requirement”.

For any execution o, we construct its permutation 7 in
the following manner:

o  All the write operations issued by the single writer
are totally ordered according to the versions they
use.

o The read operations are scheduled one by one in
order of their invocation time: A read r that reads

2. The “if-then” statement should be executed atomically when run
in the multi-threaded mode.

3. The locality of 2-atomicity can be easily proved by following the
proof of the locality of atomicity [16].
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’|—| write F—read --- read-from relation

Wy /w

Fig. 2. Old-new inversion. Two non-overlapping reads r and r’, both
overlapping the write w, obtain out-of-order values. (Time goes from
left to right.).

from a write w is scheduled immediately after
both w and all the read operations preceding (i.e.,
<) 7 (which have already been scheduled).

Clearly, this permutation = is sequential and satisfies
the “real-time requirement” of 2-atomicity. It remains to
show that it also satisfies the “weak read-from
requirement” for each read. This argument is a case-by-
case analysis, concerning the partial order among and
the semantics of read/write operations.

For an operation o, let o,; denote its start time (i.e., the
time of its invocation event), oy its finish time (i.e., the time
of its response event), and [0, o] its time interval (Fig. 2 for
an example). We also write r = R(w) to denote the “read-
from” relation in which the read r reads from the write w.

For any read operation r, we consider two exhaustive
cases according to whether there are concurrent write
operations with it in the execution o.

CASE 1: There is no concurrent write with r. Due to the
majority communication rule, r must read from its most
recently preceding write w, and hence in 7, it is scheduled
between w and the next write.

CASE 2: There are concurrent writes with r, among
which the earliest one in time is denoted w. Then for w,
Tst € [we, wp) holds. There are two sub-cases according
to the write from which r reads.

CASE 2.1: r reads from some concurrent write. In this
case, r is scheduled in 7 between this write and its next
one, since any reads preceding r cannot read from any
writes later than w.

CASE 2.2: r reads from its most recently preceding write in
o (denoted w'). Namely, r = R(w'). CASE 2.1 and CASE
2.2 are exhaustive since r cannot read from either any
earlier writes than w' due to the majority communication
rule or any writes it precedes. We now consider two
exhaustive cases about other read operations than r
(shown in Fig. 2).

CASE 2.2.1: There is no read 1’ that precedes r in o and is
concurrent with w. Formally, A r}t € [wgt,Tst). In 7w, 7 is
scheduled between w' and its next write w.

CASE 2.2.2: There is some read ' that precedes r and is
concurrent with w. Formally, 3r' : r’ﬁ € [wg, 7st]. Distin-
guish two exhaustive cases.

CASE 2.2.2.1: 7' does not reads from w. In m, r is sched-
uled between w' and its next write w, since v’ cannot read
from any writes later than w either.

CASE 2.2.2.2: v/ reads from w. Namely, ' = R(w). In
this case, we obtain an old-new inversion (Fig. 2), where
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two non-overlapping reads (i.e., r and 1), both overlap-
ping a write (i.e., w), obtain out-of-order values. In 7,
both r and +’ are scheduled between w and its next write
(i.e., "w in Fig. 2). Consequently, r reads from w’ which is
its second most recently preceding write in n, satisfying
the “weak read-from requirement” of 2-atomicity.

In conclusion, the permutation 7 satisfies the “weak
read-from requirement” of 2-atomicity in all cases. More-
over, CASE 2222 (and thus the old-new inversion
anomaly) is the only case which leads to the violations of
atomicity. 0

4 QUANTIFYING THE ATOMICITY VIOLATIONS

In this section, we quantify the atomicity violations incurred
in the PA2AM algorithm. It follows from the correctness
proof of Theorem 3.1 that the atomicity violations are exactly
characterized by the old-new inversions in CASE 2.2.2.2. Fur-
thermore, the proof has also identified the necessary and suf-
ficient condition for the old-new inversion anomaly.

Definition 4.1. The old-new inversion (ONI) involving a
read r consists of the read r, two writes w and w', and a sec-
ond read 1, such that (Fig. 2)

1) ry € [wy, wp], 2) W' immediately precedes w: w' < w,
and no other writes are between w and w', 3) r}t € [wst, 75,
4)r = R(vw'),and 5) ' = R(w).

The five requirements for old-new inversion fall into two
categories. The first three requirements involve the partial
order < on, and thus the concurrency patterns among, read/
write operations. Intuitively, the higher degree of concur-
rency an execution shows, the more old-new inversions it
may produce.

Definition 4.2. The long-lived-write concurrency pattern®
(CP) involving a read r consists of the read r, two writes w
and W', and a second read ', such that

1) 1y € [wg, wyl,

2) W' immediately precedes w: w' < w, and no other
writes are between w and W', and

3) r}t € [wst, rst)-

The concurrency pattern itself is not sufficient for old-
new inversion. Only when the read/write semantics in the
last two requirements of Definition 4.1 is also satisfied, does
an old-new inversion arise. Thus, we define the read-write
pattern conditioning on a concurrency pattern as follows.

Definition 4.3. Given a concurrency pattern consisting of
r,r’,w,and w', exactly as those in Definition 4.2, the non-
monotonic read-write pattern” (RWP) requires

4) r=R(W)and
5) ' =R(w)

In this way, an old-new inversion occurs if and only if the
read-write pattern arises given that a corresponding

4. The name highlights the intuition that long-lived writes (e.g., w in
Fig. 2) spanning multiple reads are more likely to induce atomicity
violations.

5.The name emphasizes that the read operation r violates the
monotonic-read property [22] which requires reads to observe increasingly
up-to-date data over time.
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TABLE 1
Notations and Formulas

N:number of clients, n:number of replicas, ¢2 |n/2] +1

Beta function: B(z,y) = [[]1 11— )Y Lt

A:issue/arrival rate of operations, i: service rate of operations

(@A) 1 1 A2\ ;1
= 2(,,_+)\)2 ’Sé§;tli)\7poé§(l + ()L+)\) )’t DY

Ar

Ar, Aw: rate for one-way message delay of read/write, « = i

Ji: P{replica 1 is the ¢, one that receives the request of read 7/} ?

* The formula of Jy can be found in supplementary Appendix 2.3, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.

0rg/10.1109/TC.2016.2601322; see (2.8).

concurrency pattern has emerged. A concurrency pattern
may contain more than one such 7’ defined in Definition 4.2,
as illustrated in Fig. 2.

Let R’ be a random variable denoting the number of ’s in a
concurrency pattern. Then, a read-write pattern arises if for
some r’, Definition 4.3 is satisfied. Therefore, the probability of
old-new inversions conditioning on R’ = m (m > 1; m can be
as large as the number of all read operations) is the product of
the probability of the concurrency patterns conditioning on
R’ = m and the probability of the read-write patterns condi-
tioning on R’ = m. By the law of total probability, we obtain

P{atomicity violations} = P{ONI}
= > P{CP|R =m} x P{RWP R’ = m}.

m>1

4.1)

In the following two sections, we propose a stochastic
queueing model and a timed balls-into-bins model to ana-
lyze the concurrency pattern and read-write pattern in (4.1),
respectively. The frequently used notations and formulas
are summarized in Table 1. The detailed calculations can be
found in supplementary Appendices 1 and 2, available in
the online supplemental material.

4.1 Quantifying the Rate of Concurrency Patterns
To quantify the rate of concurrency patterns conditioning on
R’ = m, we need an analytical model of the workload consist-
ing of a sequence of read/write operations for each client. For
each client, the characteristics of its workload are captured
by the rate of operations issued by it and the service time of
each operation (i.e., [0y, 0p]). We assume a Poisson process
with parameter A for the former one and an exponential dis-
tribution with parameter . for the latter one.® The scenario
of each client issuing a sequence of read/write operations is
then encoded into a queueing model. Notice that in this
model, we have abstracted away the implementation issues
of the replicas and considered them as a storage service as a
whole. We are only concerned with the service time of each
operation, which is one of the key performance characteris-
tics of the storage service.

We consider N independent, parallel A//M /1 queues, all
with arrival rate A and service rate u. Here, the two M’s
indicate that both the inter-arrival and the service distribu-
tion are exponential (and thus memory-less, or Markovian),
and the 1 indicate that there is a single server [25]. For each
queue, we use the “first come first served” discipline and

6. The Poisson process, along with the exponential distribution, has
been widely used for modeling the arrival phenomena, like packet
arrivals in Internet traffic [23] and request arrivals in storage systems
[24].

assume for simplicity that, if there is any operation in ser-
vice, no more operations can enter it. The queue @, repre-
sents the single writer.

To compute the probability that a concurrency pattern
occurs in such a queueing system in the long run, we go
through the following three steps.

Step 1: What is the stationary distribution for any two queues?

Let X'(t) be the number of operations in queue i at
time t. Then X'(t) is a continuous-time Markov chain
with two states: 0 when the queue is empty and 1 when
some operation is being served. Its stationary distribution
Py 2 P(X'(00) = 5),s € {0,1} is:

_h oo

wHA wHA

Let Y(t) = (X(t),Y’(t)) be the vector of the numbers of
operations in queues @; and @;. Since any two queues are
independent, Y(¢) is a continuous-time Markov chain with
four states (0,0), (0, 1), (1,0), and (1, 1). Its stationary distri-
bution P, ; £ P(Y (c0) = (4,7)),4,5 € {0,1} is:

2 by )\2
Mizvpo.l :Pl,OZM—Q,Pm =—7.
(+A) (4 A) (42X

Step 2: Given a read r in Q;, what is the probability of the
event, denoted E, that it starts during the service period of some
write w in Qo (formally, ry € [wg, wy] in Definition 4.2)?

The probability of E equals the probability that when r
arrives at @, it finds @Q; empty (denoted E;) and as a
bystander @ full (denoted Ej). Since events F; and Ej are
independent, we have

K

Py =

P(E) = P(E; N Ey) = P(E;) - P(Ep)
UA
(N
Step 3: Conditioning on Step 2, what is the probability of the
event, denoted En_i,,, that there are total m read operations

(denoted ') in N — 1 queues (besides Qo) which finish during the
time period [wy, vy (formally, r}t € [wst, rot) in Definition 4.2)?

= Py - P, (by the PASTA property [25]) =

First, the length of the time period [wy,Ty] is exactly the
inter-arrival time of ();, which is exponential with rate A. A
probabilistic and combinatorial analysis shows that

P{CP|R = m} = P(Ex_1,m)

:NZ‘2<N1)< m—1 >p’ng*’“*lsm,
—\ k& N—k—2

when m > 1. For the special case m = 0, we have

(4.2)

P{CP|R =0} = P(Ex_10) =p "
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Summing over m (m > 1), we get the probability that there
exists a concurrency pattern (for some read r)

P{CP} =1-P{CP|R' =0} =1-p)". (4.3)
4.2 Quantifying the Rate of Read-Write Patterns
Given the concurrency patterns, we further quantify the rate
of read-write patterns, namely, r = R(w') A 3’ : 7' = R(w),
conditioning on R’ = m. Here ' is among the m read opera-
tions in Step 3 of Section 4.1. To this end, we explore in detail
the majority communication rule used in the PA2AM algo-
rithm. We assume that 1) no node failure or link failure
occurs’; 2) to complete an operation, the client accesses all
the n replicas and wait for the first ¢£ |n/2] 4+ 1 acknowl-
edgments from them; and 3) each replica processes the read/
write operations on each individual register in FIFO order,
the order it receives them. It follows that:

P{RWP | R’ = m}
=P{r=RW)AI v = R(w)}
<P{r# R(w) A 7' = R(w)}

=P{r # R(w)} x (1 —P{r' # R(w) |r # R(w)}m),

(4.4)

where r # R(w) (resp. ' # R(w)) denotes that r (resp. 1)
does not read from w. The inequality is due to the fact that
r = R(w') implies r # R(w). We then calculate P{r # R(w)}
and P{r’' # R(w)|r # R(w)}.

Which write would be read from by some read depends on
the states of the replicas from which it collects the first ¢
acknowledgments. The states of the replicas further depend
on the timing issues in the PA2AM algorithm, such as mes-
sage delays and the time lag between the events that messages
are sent. Taking into account the timing issues, we propose
the timed balls-into-bins model for the read and write proce-
dures in the PA2AM algorithm. Let D, (resp. D,,) be a contin-
uous random variable denoting the one-way message delay
for read (resp. write) operations. Let T be a continuous random
variable denoting the time lag between the time when two
messages of interest are sent, and ¢ an observed value of 7'.

In the timed balls-into-bins model, there are n bins (corre-
sponding to n replicas). Consider two robots R; and R, (cor-
responding to read or write operations) which can produce
multiple balls (corresponding to messages) instantaneously.
At time 0, robot R; 1) produces n balls instantaneously; 2)
Immediately these n balls are independently sent to the n
bins, one ball per bin; 3) The delays for the balls going from
the robot to its destination bin are independent and identi-
cally distributed with the same distribution as D, or D,
defined above,® depending on whether the robot represents
a read or a write.

At time ¢ (defined above), robot R, independently does
exactly the same thing as robot R; does (i.e., 1), 2), and 3)
for robot R; above).

7.The analysis concerning a failure model would be rather
involved; we leave it to future work.

8. For simplicity, we assume through the identical distribution that
each replica is equally likely to be part of a majority of replicas from
which some operation waits for responses. Replicas could be distin-
guished by their own parameters in the same assumed probability dis-
tribution of delays.
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To calculate P{r # R(w)}, we are concerned with the
model in which the robots R; and R, represent the write
operation w and the read operation r involved in an old-new
inversion, respectively. Furthermore, we assume that the
random variable D, (resp. D,,) for one-way time delay is
exponentially distributed with rate A, (resp. A,). The time
lag T between the events that w and r are issued corre-
sponds to the time period [wy, ry]. That is, T' is an exponen-
tial random variable with rate A (Step 3 of Section 4.1). For
simplicity, we take the time lag ¢ to be the expectation of T,
ie, t =1 Finally, we are interested in the time point ¢’
when exactly ¢£ |n/2] + 1 of the n bins have received the
balls from R, (i.e., r), and denote the set of these ¢ bins by B.
In terms of the timed balls-into-bins model, the case of
r # R(w) corresponds to the event that none of the ¢ bins in
B receives a ball from R; (i.e., w) before it receives a ball
from R, (i.e., r), and its probability is

1@ Blg,a(n —q) +1)

— o Pw
P{r # R(w)} =e¢ Blon—q+1)

(4.5)

Given r # R(w) and ' < r, some messages from w are
known to reach the replicas later than the time ' has col-
lected enough acknowledgments and finished. To calculate
P{r # R(w) |r # R(w)}, we consider a slightly generalized
timed balls-into-bins model, in which robot R, picks some
bins uniformly at random (without replacement) and sends
a ball to each of them. For simplicity, we assume that there
is at most one 7’ following the concurrency pattern in a sin-
gle process. Based on this assumption, we have

J1

P{r' # R(w)|r # R(w)} = {W

if n > 2,

4.6
if n=2. (46)

Substituting (4.5) and (4.6) into (4.4) gives, for n > 2, the
rate of read-write patterns conditioning on R’ = m

‘B(q,a(n —q) + 1)
B(q,'I’L —q + 1)

| <1 - (ﬁ))

For n =2, we have P{RWP |R’ = m} = 0. Actually, in this
case, there are no concurrency patterns at all.

P{RWP |R' =m} < ¢t
“.7)

4.3 Numerical Results and Discussions

Substituting (4.2) and (4.7) into (4.1), we obtain the rate of
violating atomicity; see (3.1) of supplementary Appendix 3,
available in the online supplemental material. From the
numerical analysis, in which we have chosen A = u = 10571
and A\, =\, =20s! based on the experimental results
in Section 5.2, we observe that (see Fig. 3% the detailed
numerical results and discussions about the generality of
our probabilistic analysis can be found in supplementary
Appendix 3, available in the online supplemental material):

Observation 4.1. Probabilistically, the PA2AM algorithm
rarely violates atomicity.

9. The graphs exhibit nearly regular staircase-like patterns due to
the floor function ¢ £ [n/2] + 1 in their formulas.
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Fig. 3. The probabilities of concurrency patterns, read-write patterns,
and old-new inversions (N =n, A = u = 1057}, A, = A, = 20s7%). (log0
is not defined.).

Observation 4.2. The read-write patterns dominate in prevent-
ing from atomicity violations incurred in the PA2AM algo-
rithm, compared to the concurrency patterns which occur quite
often.

5 EXPERIMENTS AND EVALUATIONS

This section studies the PA2AM algorithm empirically. We
have implemented a prototype distributed storage system
among mobile phones, which provides both 2-atomic data
access based on the PA2AM algorithm and atomic data
access on the ABD algorithm (i.e., the unbounded emula-
tor)."” We compare read latencies of both algorithms. We
measure the proportions of atomicity violations incurred in
the PA2AM algorithm, and compare them to the numerical
results. In Section 5.4, we compare probabilistically-atomic
2-atomicity to weak consistency conditions.

5.1 Experimental Design

Our prototype system comprises a collection of Google
Nexus5 smartphones (CPU: 226 GHz, Heap: 30 MB,
Android: 4.4.2), equipped with 72 Mbps wireless LAN. In
both algorithms, each phone acts as both a client and a rep-
lica, targeted at the peer-to-peer, location-based “meet-up”
mobile application in Section 1. As a client, each phone col-
lects its own execution for offline analysis. Clocks on the
phones are synchronized with the same desktop computer.

We explore three kinds of parameters: 1) algorithm
parameters: replication factor (i.e., the number of phones)
and consistency conditions (i.e., atomicity or 2-atomicity);
2) workload parameters: the number of read /write operations
issued by each client and the issue rate on each client; and
3) network parameter: the injected random delay in network
communication, modeling the network latency variances.

We are concerned with two metrics, for each of which the
microbenchmark has been chosen as adverse as possible to
the PA2AM algorithm.

Read Latency. We compare read latencies of both algo-
rithms by varying replication factors and issue rates of oper-
ations. Each client issues operations at a Poisson rate A (=5
or 50; 5 is for systems at leisure while 50 at busy) per second.
For each ), the replication factors vary from 2 to 5. Each
reader issues 200,000 read operations. No additional delays
are injected when evaluating read latencies.

10. The “communicate” procedure in [17] has been implemented to
build reliable FIFO communication channels.

Atomicity Violations. We quantify the rate of atomicity
violations incurred in the PA2AM algorithm by varying
both replication factors and network delay variances. The
replication factors vary from 2 to 5. For each replication fac-
tor, the injected random delays in network communication
are uniformly distributed over integers in [0, d) (d can be 0,
10, 20, 50, 100, or 200 ms). Each client issues 200,000 opera-
tions, at such a high Poisson rate A = 50 per second that the
system operates at its full capacity.

In all experiments, operations are performed on a single
register, and the single writer issues only write operations.
This makes the microbenchmarks even more adverse to the
PA2AM algorithm.

5.2 Experimental Result 1: Read Latency

We report, for each execution, the minimum, the 25th, the
median (marked by a line between box), the 75th, and the
99th quantiles and the average (marked by a star) of its read
latencies, using box plots (Fig. 4). The proportion of outliers,
those above the 99th quantile in each execution, varies from
0.869167 to 1.0 percent. On average, the average of the out-
liers only is around 3.8 times that of the whole data.

As shown in Fig. 4, the read latencies in the PA2AM algo-
rithm have been reduced from those in the ABD algorithm
by 20 to 41 percent. The reduced percentages are not neces-
sarily 50 percent,'' because the read latencies are affected by
various factors such as network conditions, I/O for logging,
garbage collections, and thread and lock contentions.

Fig. 4 also shows that the issue rates of operations have
little impact on the average read latencies. For in both algo-
rithms, operations proceed independently, without waiting
for each other. Nevertheless, an execution issuing opera-
tions at rate A = 50 tends to trigger garbage collections more
frequently and thus incurs a higher variance of the read
latencies than that at rate A = 5.

In our experiments, the executions with two replicas
have incurred high read latencies because each read has to
wait for acknowledgments from all two replicas and is thus
susceptible to network conditions.

5.3 Experimental Result 2: Atomicity Violations

To measure the proportion of the atomicity violations
incurred in the PA2AM algorithm, we count the number of
read operations (#R) and the occurrences of concurrency
patterns (#CP) and read-write patterns (#RWP). Because
each concurrency pattern or read-write pattern is associated
with some read operation r, we are concerned with the fol-
lowing quantities:

_ #CP _ #RWP
LRWP (5.1)
P(ONI) = P(CP) - P(RWP|CP) = 0=

Equation (5.1) is a practical approximation to (4.1) in theory,
without going into the details of conditioning on R’ = m.

11. Given that the PA2AM algorithm completes each read in one
round-trip instead of two for the ABD algorithm, one might expect that
the experimental, quantitative read latencies would be reduced by
around 50 percent.
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Fig. 4. Comparison of read latencies in both the PA2AM algorithm and the ABD algorithm.

TABLE 2
The Numbers and Proportions of Concurrency Patterns and Read-Write Patterns (Replication Factor = 5)

d (ms) # read operations # concurrency patterns # read-write patterns P(CP) P(RWP |CP) P(ONI)
10 800,000 269,061 47 0.336326 0.000174682 0.00005875
20 800,000 306,274 44 0.382843 0.000143662 0.000055
50 800,000 428,344 44 0.53543 0.000102721 0.000055
100 800,000 549,102 83 0.686378 0.000151156 0.00010375
200 800,000 627,814 100 0.784768 0.000159283 0.000125

TABLE 3
The Numbers and Proportions of Concurrency Patterns and Read-Write Patterns (d = 0 ms)
#replicas  #read operations  # concurrency patterns  # read-write patterns P(CP) P(RWP | CP) P(ONI)

2 200,000 49,540 0 0.2477 0. 0.

3 400,000 157,350 34 0.393375 0.000216079 0.000085
4 600,000 286,508 6 0.477513 0.000020942 0.00001
5 800,000 429,047 282 0.53630875 0.000657271 0.0003525

The feasibility of such an approximation is justified by the
experimental results presented shortly, in the sense that
Observations 4.1 and 4.2 drawn from the numerical results
based on the equations in theory fit well with the empirical
data and (5.1).

Due to the limited space, Tables 2 and 3 summarize part
of the experimental results. Table 2 varies the parameter d
for network latency variances, while fixing the replication
factor to be 5. Table 3 varies the replication factors, while
fixing d = 0 ms (i.e., without injecting additional delays).

Table 2 shows that higher latency variances produce
more concurrency patterns. Table 3 shows that the propor-
tion of concurrency patterns grows as the replication factor
increases, as implied by (4.3).

For the number of read-write patterns, the experimental
results exhibit three features. First, no read-write patterns
arise in only two replicas. This is because both read and write
operations are required to collect acknowledgments from
both replicas before completing. Second, there are fewer read-
write patterns in the case of four replicas than those in the
case of three or five replicas. In the case of four replicas, each
read needs to collect three acknowledgments from (75 percent
of) these four replicas, and gains more opportunities to obtain
the latest data version. For three or five replicas, the majorities
account for 66.7 and 60 percent, respectively. Third, Table 2
shows that network latency variance also contributes to the
occurrences of read-write patterns since it may lead to out-of-
order message delivery in the timed balls-into-bins model.

More importantly, the experimental results have sup-
ported our probabilistic analysis, especially Observations 4.1

and 4.2. First, the proportion of old-new inversions P(ONI) is
quite small, e.g., less than 0.03 percent in most executions.
Second, the proportion of read-write patterns among concur-
rency patterns P(RWP|CP) is much less than that of concur-
rency patterns P(CP) themselves. Namely, although
concurrency patterns appear frequently (e.g., accounting for
more than 50 percent in the setting of five replicas and
d =0 ms), only a quite small portion of them satisfy the
requirements of the read-write pattern to constitute old-new
inversions (e.g., about 0.06 percent in the same setting). This
way the read-write patterns dominate in preventing from
atomicity violations incurred in the PA2AM algorithm.

Table 4 compares the experimental results to the numeri-
cal results obtained in Section 4.3, on the probabilities/pro-
portions of old-new inversions. It shows that they are quite
close to each other, given that many numbers are of such a
small order of magnitude.

5.4 Comparison to Weak Consistency Conditions

To further demonstrate the benefits of probabilistically-
atomic 2-atomicity, we compare it to weak consistency condi-
tions, in terms of both read latencies and atomicity violations
incurred in their maintenance algorithms. We implemented
eventual consistency [26] on our prototype distributed storage
system. The protocol, denoted RWN, for eventual consistency
we adopted is based on the R + W < N formula described in
[26], where N is the number of replicas of a particular regis-
ter,'”> R is the number of replicas that a read operation needs to

12. We use N to denote the number of replicas in this section.
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TABLE 4
Numerical Results and Experimental Results on the Probabilities/Proportions of Old-New Inversions

numerical results (A = 10s™!)* (from Table 2 of

Appendix 3, available in the online

. . o —1y a
#replicas supplemental material ) experimental results (A = 50s~") © (from Table 3)
P{CP} P{RWP | CP} P{ONI} P(CP) P(RWP|CP) P(ONI)
2 0.28125 0. 0. 0.2477 0. 0.
3 0.518555 0.00088802 0.000203683 0.393375 0.000216079 0.000085
4 0.677307 0.000183791 0.0000352958 0.477513 0.000020942 0.00001
5 0.781222 0.000266569 0.0000437181 0.53630875 0.000657271 0.0003525

& Both A = 10s~! and A = 505~ mean that the system operates at its full capacity.

query before completing, and W is the number of replicas
from which a write operation needs to receive acknowledg-
ments before completing. The read and write procedures in the
RWN protocol are the same with those in the PA2AM algo-
rithm, exceptthat R = W = |[N/2| + land thus R+ W > N
in the PA2AM algorithm; this comparability justifies our
choice of eventual consistency and the RWN protocol.

5.4.1 Experimental Design

For both metrics of read latency and atomicity violations, we
vary R, W, and N as follows:

e N=3:2+2> 3 for ABD, 2+ 2 > 3 for PA2AM,
2+1=3,1+2=3,and 1+ 1 < 3 for RWN;

e N=53+3>5 for ABD, 3+3 > 5 for PA2AM,
3+2=5,2+3=5,2+2<5,1+4=5,1+3 <5,
and 1+ 2 < 5 for RWN.

In all experiments, each phone acts as both a client and a
replica. Each client issues reads/writes at such a high Poisson
rate of A = 50 per second that the system operates at its full
capacity. Each reader issues 200,000 read operations, and the
single writer issues only write operations. All operations are
performed on a single register. No additional delays are
injected when evaluating either read latencies or atomicity
violations.

5.4.2 Experimental Result: Read Latency

Fig. 5 compares the read latencies under various configura-
tions of R, W, and N, covering the ABD algorithm for atom-
icity, the PA2AM algorithm for 2-atomicity, and the RWN
protocol for eventual consistency. For each configuration,
we report the minimum, the 1st, the 25th, the median, the
75th, the 95th, the 99th, and the maximum quantiles and the
average (marked by unfilled pentagon) of its read latencies.
We first observe that the averages of read latencies correlate
positively with the values of both R and W. More impor-
tantly, the latency reduction from the ABD algorithm to the
PA2AM algorithm is considerably greater than that from
the PA2AM algorithm to the RWN protocol in typical con-
figurations. For example, with five replicas, the latency
reduction from 3+ 3 > 5 (ABD) to 3 +3 > 5 (PA2AM) is
40.2 percent (i.e., from 194 to 116 ms), while the latency
reduction from 3 +3 > 5 (PA2AM) to2 +2 < 5is 13.8 per-
cent (i.e., from 116 to 100 ms). With three replicas, the
latency reduction from 2+2 >3 (ABD) to 2+2 > 3
(PA2AM) is 28.8 percent (i.e., from 132 to 94 ms), while the
latency reduction from 2 +2 > 3 (PA2AM) to 1 +2 =3 is
22.3 percent (i.e., from 94 to 73 ms).

5.4.3 Experimental Result: Atomicity Violations

Given an execution of the RWN protocol, we quantify its
atomicity violations by counting the number (and comput-
ing the proportion) of reads in it for each possible staleness
k. The staleness of each read is calculated with respect to the
sequential permutation of this execution constructed in the
way described in the correctness proof of Theorem 3.1.

To cover different variants of the RWN protocol, we con-
sider both the original one, explicitly denoted RWN-AII
here, where each operation contacts all replicas and waits
for responses from a majority of them and the variant,
denoted RWN-Maj, where each operation contacts and
waits for responses from only a majority of replicas chosen
randomly. Intuitively, the effects of anti-entropy mecha-
nisms such as gossip among replicas and read repair [2] on
staleness lie in between those of RWN-AIl and RWN-Maj.

Fig. 6 shows the proportions of k-staleness incurred in
the RWN-Maj protocol, under various configurations of
R+ W < N. We first observe that the RWN-Maj protocol
for eventual consistency does not provide any deterministic,
worst-case guarantee on data staleness for reads. Most exe-
cutions shown in Fig. 6 incur staleness of levels k& > 5. Sec-
ond, the RWN-Maj protocol incurs atomicity violations
much more frequently than the PA2AM algorithm. For
example, in the case of 2+ 2 < 5, about 19.0 percent (i.e.,
1.0 — 0.8102775) of reads have obtained stale values. For
1+1 < 3,itis 52.3 percent.

Table 5 summarizes the behavior of the RWN-AII protocol
concerning atomicity violations, in terms of both the values of
k in the worst cases and the proportions of staleness. Intui-
tively, RWN-All incurs less staleness than RWN-Maj, because
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Fig. 5. Comparison of read latencies under various configurations of R,
W, and N. (Values above 250 ms are not shown.)
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Fig. 6. The proportions of k-staleness incurred in the RWN-Maj protocol
under various configurations of R, W, and N.

in the RWN-AIl protocol, all the operations are effectively
being performed on the fastest R or W replicas. However,
RWN-ALI suffers from severer atomicity violations than the
PA2AM algorithm. First, all the RWN-AIl executions shown
in Table 5 incur staleness of levels k > 2, while the PA2AM
algorithm incurs only 1-staleness, i.e., the old-new inversions.
Moreover, the RWN-AIl protocol incurs higher rates of stale-
ness than the PA2AM algorithm. For example, with three rep-
licas, 0.0315 percent of (i.e., 126) reads in the case of 1 +2 =3
have obtained stale values, while 0.0085 percent of (i.e., 34)
readsin2 + 2 > 3 (PA2AM) obtained stale values.

These experimental results have demonstrated that proba-
bilistically-atomic 2-atomicity, as well as the PA2AM algo-
rithm, brings the best of both worlds: it shares the
performance advantage of weak consistency such as eventual
consistency, and it has the statistically “almost strong” feature
with respect to strong consistency, namely, atomicity. Thus,
probabilistically-atomic 2-atomicity would be arguably as
valuable an addition to the consistency /latency spectrum.

6 RELATED WORK

We divide the related work into five categories.

Consistency/Latency Tradeoff. Compared to the CAP trade-
off [27] among consistency, availability, and partition toler-
ance, the consistency/latency tradeoff arguably has been
more influential on the designs of distributed storage sys-
tems, as it is present at all times during system operation
[5]. Practical techniques that allow fine tuning of the consis-
tency/latency tradeoff in storage systems have been investi-
gated [28], [29], [30]. Some other work study the
consistency/latency tradeoff from a more theoretical per-
spective, by establishing lower bounds on the achievable
latency to assure strong consistency [9], [11], [12]. In this
paper we propose the notion of almost strong consistency
as an option for the consistency/latency tradeoff.
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Strong/Weak Consistency Conditions. Though many distrib-
uted storage systems trade strong consistency for low
latency [2], [3], [7], [8], some choose to offer strong consis-
tency. For example, Spanner [31] of Google supports
externally-consistent (or equivalently, linearizable [16]) dis-
tributed transactions. In the paper [31] the authors have
confirmed the complaints from users that Bigtable [1]
(another product of Google which supports only eventu-
ally-consistent replication across datacenters) can be diffi-
cult to use for applications that want strong consistency in
the presence of wide-area replication. Windows Azure Stor-
age (WAS) [32] of Microsoft has also been driven by the
feedback from many customers who want strong consis-
tency, especially enterprise customers moving their line of
business applications to the cloud. Consequently, WAS
offers strong consistency so that clients always see the latest
value that was written for a data object [22]. Even in
Dynamo [2] of Amazon, as well as Apache Cassandra [33],
which only claims eventual consistency, offers alternative
strongly consistent reads by selecting different read and
write quorums [22], [26].

Motivated by the question “What (strong) consistency condi-
tion can be achieved if low latency is a prerequisite?”, our notion of
almost strong consistency requires both deterministically
bounded staleness of data versions for each read and probabi-
listic quantification on the low rate of “reading stale data”.

Complexity of Emulating Atomic, Single-Writer Registers. The
ABD algorithm for atomicity [17], [19] emulates the atomic,
single-writer registers in unreliable, asynchronous networks,
given that a minority of nodes may fail. It requires each read
to complete in two round-trips. Dutta et al. [10] proved that
it is impossible to obtain a fast emulation with an arbitrary
number of readers, where each read (and write) completes in
one round-trip. Georgiou et al. [34] studied the semi-fast
emulations (of atomic, single-writer registers) where most
reads complete in one round-trip. Guerraoui et al. considered
the best-cases complexity, assuming synchrony, no or few
failures, and absence of operation contention. In this case,
fast emulations do exist [35].

We investigate almost strong consistency in terms of
probabilistically-atomic 2-atomicity. The PA2AM algorithm
emulates 2-atomic, single-writer registers, completing each
read operation in one round-trip.

Quantifying Consistency Conditions. Consistency conditions
can be quantified from four perspectives: data versions, ran-
domness, timeliness, and numerical values [36], [37], [38]. The
semantics of k-atomicity [18] allows reads to obtain data of
stale versions, as long as the staleness is bounded by k. Both
random registers [39] and PBS [37] allow one to obtain a prob-
ability distribution over the set of stale data versions that may
be returned. However, none of them requires deterministic
worst-case guarantee on data staleness. Thus it is legal for

TABLE 5
Proportions of Staleness Incurred in the RWN-AIl Protocol under Various Configurations of R, W, and N

#replicas replica factor = 3 (400,000 read operations) replica factor = 5 (800,000 read operations)
R,W,N I+1 <3 142=3 2+1=3 242> 3(PA2AM) 1+2<5 1+3<5 14+4=5 2+2<5 24+3=5 3+2=5 343 > 5(PA2AM)
maxk 6 4 2 1 2 2 2 2 2 2 1

2> -staleness  0.0084125 0.000315 0.0004675 0.000085

0.00377875  0.002755

0.00406  0.0027225 0.0020275 0.002255 0.0003525
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their algorithms to return arbitrarily stale data. As far as we
know, our probabilistically-atomic 2-atomicity, as well as
almost strong consistency, is the first to integrate deterministi-
cally bounded staleness of versions with randomness. Fur-
ther, the rate of “reading stale data” in the PA2AM algorithm
is quantified with respect to atomicity instead of reqularity (as
in [39] and [37]), which is more challenging since we shall
deal with concurrent operations. Thus, we propose a stochastic
queueing model for analyzing the concurrency pattern first
and then a timed balls-into-bins model for analyzing the read-
write pattern.

Timed consistency conditions [40], [41] require writes to
be globally visible within a period of time. The A-atomicity
property [42] allows reads to return values that are stale by
up to A time units. The I'-atomicity property [43], inspired
by A-atomicity, is arguably more accurate. TACT [36], a con-
tinuous consistency model, integrates the metric on numeri-
cal error with staleness.

k-Atomicity. k-atomicity is first proposed in [18]. It also
gives a protocol for emulating k-atomic, single-writer
registers which, however, completes each read in two
round-trips. Golab et al. have studied the k-atomicity-ver-
ification problem [21], [42], [44], which is to check
whether a given execution is k-atomic. Later on, it seems
that Taubenfeld [45] have re-defined k-atomic registers
and studied them from more theoretical perspectives of
computability and complexity.

7 CONCLUSION AND FUTURE WORK

In this paper we propose the notion of almost strong consis-
tency as an option for the consistency/latency tradeoff. It
provides both deterministically bounded staleness of data
versions for each read and probabilistic quantification on the
rate of “reading stale data”, while achieving low latency.
We investigate almost strong consistency in terms of
probabilistically-atomic 2-atomicity. The PA2AM algorithm
satisfies 2-atomicity, and completes each read in one round-
trip. We quantify the atomicity violations incurred in the
PA2AM algorithm, both analytically and experimentally.
We also compare probabilistically-atomic 2-atomicity to
weak consistency conditions.

We identify two issues for future work. First, we plan to
evaluate probabilistically-atomic 2-atomicity on cloud stor-
age systems under a variety of benchmarks. In such sys-
tems, the registers are replicated among a collection of
geographically distributed machines, and a large number
of remote clients can be on either physical machines or
mobile devices. The major challenge here is to achieve an
accurate enough clock synchronization among all the cli-
ents due to (possibly) heterogeneous networks, high net-
work latencies, and high latency variances [30], [38], that is
crucial for the quantification of the timestamped execu-
tions. Second, we turn to k-atomic, multi-writer registers
(k > 1). This is challenging because all writes are not totally
ordered in the multi-writer model. We will first study
whether k-atomic, multi-writer registers admit low-latency
implementations that complete each read in one round-trip.
Then we will investigate a particular low-latency imple-
mentation for probabilistic atomic, multi-writer registers,
and quantify its behavior with respect to atomicity.
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